[1] 周妍, 罗明, 周旭, 等. 工矿废弃地复垦土地跟踪监测方案制定方法与实证研究[J]. 农业工程学报, 2017, 33(12): 240-248. doi: 10.11975/j.issn.1002-6819.2017.12.031 ZHOU Y, LUO M, ZHOU X, et al. Making method of tracking monitoring scheme for abandoned industrial and mining land reclamation and its empirical research[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(12): 240-248 (in Chinese). doi: 10.11975/j.issn.1002-6819.2017.12.031
[2] NIES D H. Microbial heavy-metal resistance[J]. Applied Microbiology and Biotechnology, 1999, 51(6): 730-750. doi: 10.1007/s002530051457
[3] MITSUNOBU S, HARADA T, TAKAHASHI Y. Comparison of antimony behavior with that of arsenic under various soil redox conditions[J]. Environmental Science & Technology, 2006, 40(23): 7270-7276.
[4] CASIOT C, UJEVIC M, MUNOZ M, et al. Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago (upper Orb Basin, France)[J]. Applied Geochemistry, 2007, 22(4): 788-798. doi: 10.1016/j.apgeochem.2006.11.007
[5] HILLER E, LALINSKÁ B, CHOVAN M, et al. Arsenic and antimony contamination of waters, stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians, Slovakia[J]. Applied Geochemistry, 2012, 27(3): 598-614. doi: 10.1016/j.apgeochem.2011.12.005
[6] MAJZLAN J, LALINSKA B, CHOVAN M, et al. A mineralogical, geochemical, and microbiogical assessment of the antimony- and arsenic-rich neutral mine drainage tailings near Pezinok, Slovakia[J]. American Mineralogist, 2011, 96(1): 1-13. doi: 10.2138/am.2011.3556
[7] BAI Y, TANG X J, SUN L Y, et al. Application of iron-based materials for removal of antimony and arsenic from water: Sorption properties and mechanism insights[J]. Chemical Engineering Journal, 2022, 431: 134143. doi: 10.1016/j.cej.2021.134143
[8] WILLIS S S, HAQUE S E, JOHANNESSON K H. Arsenic and antimony in groundwater flow systems: A comparative study[J]. Aquatic Geochemistry, 2011, 17(6): 775-807. doi: 10.1007/s10498-011-9131-6
[9] 何梦媛, 董同喜, 茹淑华, 等. 畜禽粪便有机肥中重金属在土壤剖面中积累迁移特征及生物有效性差异[J]. 环境科学, 2017, 38(4): 1576-1586. HE M Y, DONG T X, RU S H, et al. Accumulation and migration characteristics in soil profiles and bioavailability of heavy metals from livestock manure[J]. Environmental Science, 2017, 38(4): 1576-1586 (in Chinese).
[10] STERCKEMAN T, DOUAY F, PROIX N, et al. Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France[J]. Environmental Pollution, 2000, 107(3): 377-389. doi: 10.1016/S0269-7491(99)00165-7
[11] 唐世琪, 刘秀金, 杨柯, 等. 典型碳酸盐岩区耕地土壤剖面重金属形态迁移转化特征及生态风险评价[J]. 环境科学, 2021, 42(8): 3913-3923. TANG S Q, LIU X J, YANG K, et al. Migration, transformation characteristics, and ecological risk evaluation of heavy metal fractions in cultivated soil profiles in a typical carbonate-covered area[J]. Environmental Science, 2021, 42(8): 3913-3923 (in Chinese).
[12] 陈江军, 刘波, 李智民, 等. 江汉平原典型场区土壤重金属赋存形态及其影响因素探讨[J]. 资源环境与工程, 2018, 32(4): 551-556. CHEN J J, LIU B, LI Z M, et al. Soil heavy metal occurrence and its influencing factors in typical areas in Jianghan plain[J]. Resources Environment & Engineering, 2018, 32(4): 551-556 (in Chinese).
[13] 郑顺安. 我国典型农田土壤中重金属的转化与迁移特征研究[D]. 杭州: 浙江大学, 2010. ZHENG S A. Studies on the transformation and transport of heavy metals in typical Chinese agricultural soils[D]. Hangzhou: Zhejiang University, 2010 (in Chinese).
[14] TELLA M, POKROVSKI G S. Antimony(Ⅲ) complexing with O-bearing organic ligands in aqueous solution: An X-ray absorption fine structure spectroscopy and solubility study[J]. Geochimica et Cosmochimica Acta, 2009, 73(2): 268-290. doi: 10.1016/j.gca.2008.10.014
[15] REDMAN A D, MACALADY D L, AHMANN D. Natural organic matter affects arsenic speciation and sorption onto hematite[J]. Environmental Science & Technology, 2002, 36(13): 2889-2896.
[16] BAUER M, BLODAU C. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments[J]. Science of the Total Environment, 2006, 354(2/3): 179-190.
[17] 霍丽娟, 王美玲, 赵慧超, 等. 不同组成有机质对土壤中砷迁移行为的影响[J]. 地球与环境, 2022, 50(2): 184-191. HUO L J, WANG M L, ZHAO H C, et al. Effects of natural organic matter with different composition on the mobility of arsenic in soil[J]. Earth and Environment, 2022, 50(2): 184-191 (in Chinese).
[18] CHEN Z R, CAI Y, LIU G L, et al. Role of soil-derived dissolved substances in arsenic transport and transformation in laboratory experiments[J]. The Science of the Total Environment, 2008, 406(1/2): 180-189.
[19] 张磊, 宋柳霆, 郑晓笛, 等. 溶解有机质与铁氧化物相互作用过程对重金属再迁移的影响[J]. 生态学杂志, 2014, 33(8): 2193-2198. ZHANG L, SONG L T, ZHENG X D, et al. The remobilization of heavy metals influenced by interaction of DOM and iron oxides[J]. Chinese Journal of Ecology, 2014, 33(8): 2193-2198 (in Chinese).
[20] ZHOU L X, WONG J W. Effect of dissolved organic matter from sludge and sludge compost on soil copper sorption[J]. Journal of Environmental Quality, 2001, 30(3): 878-883. doi: 10.2134/jeq2001.303878x
[21] TIGHE M, ASHLEY P, LOCKWOOD P, et al. Soil, water, and pasture enrichment of antimony and arsenic within a coastal floodplain system[J]. Science of the Total Environment, 2005, 347(1/2/3): 175-186.
[22] AIHEMAITI A, JIANG J G, LI D A, et al. The interactions of metal concentrations and soil properties on toxic metal accumulation of native plants in vanadium mining area[J]. Journal of Environmental Management, 2018, 222: 216-226.
[23] 王哲, 宓展盛, 郑春丽, 等. 生物炭对矿区土壤重金属有效性及形态的影响[J]. 化工进展, 2019, 38(6): 2977-2985. WANG Z, MI Z S, ZHENG C L, et al. Effect of biochar on the bioavailability and transformation of heavy metals in soil of mining area[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2977-2985 (in Chinese).
[24] 国家环境保护总局. 土壤环境监测技术规范: HJ/T 166—2004[S]. 北京: 以中国环境出版社, 2005. State Environmental Protection Administration. Technical specification for soil environmental monitoring: HJ/T 166—2004[S]. Beijing: China Environmental Science Press, 2005 (in Chinese).
[25] 中华人民共和国国土资源部. 土地质量地球化学评价规范: DZ/T 0295—2016[S]. 北京: 中国标准出版社, 2016. Ministry of Land and Resources of the People's Republic of China. Determination of land Quality Geochemical Evaluation: DZ/T 0295—2016[S]. Beijing: Standards Press of China, 2016 (in Chinese).
[26] 生态环境部, 国家市场监督管理总局. 土壤环境质量 农用地土壤污染风险管控标准: GB 15618—2018[S]. 北京: 中国标准出版社, 2019. Ministry of Ecology and Environment, State Administration for Market Regulation. Soil environmental quality Risk control standard for soil contamination of agricultural land: GB 15618—2018[S]. Beijing: Standards Press of China, 2019 (in Chinese).
[27] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017
[28] ZHAO L, XU Y F, HOU H, et al. Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China[J]. Science of the Total Environment, 2014, 468/469: 654-662. doi: 10.1016/j.scitotenv.2013.08.094
[29] PAGE A L, MILLER R H, KEENEY D R. Total carbon, organic carbon, and organic matter[M]//Methods of soil analysis. Soil Science Society of America Inc. Wisconsin, 1982: 539-579.
[30] RHOADES J D. Cation exchange capacity[M]//Methods of soil analysis. Part 2. Chemical and microbiological properties, American Society of Agronomy, Inc. Wisconson, 1982: 149-157.
[31] BLACK C A. Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling[M]. Madison, WI, USA: American Society of Agronomy, Soil Science Society of America, 1965.
[32] GB/T 9837—1988, 土壤全磷测定法[S]. GB/T 9837—1988, Determination of total phosphorus in soil[S] (in Chinese).
[33] 中华人民共和国农业部. 土壤检测 第24部分: 土壤全氮的测定自动定氮仪法: NY/T 1121.24—2012[S]. 北京: 中国标准出版社, 2012. Ministry of Agriculture of the People's Republic of China. Soil testing - Part 24: Determination of total nitrogen in soil by automatic nitrogen determination apparatus: NY/T 1121.24—2012[S]. Beijing: Standards Press of China, 2012 (in Chinese).
[34] 王生朴, 连兵. 甘肃省土壤环境背景值特征及其分布规律[J]. 甘肃环境研究与监测, 1993(3): 1-7. WANG S P, LIAN B. Characteristics and distribution of soil environmental background value in Gansu Province[J]. China Industrial Economics, 1993(3): 1-7 (in Chinese).
[35] 蔡大为, 李龙波, 蒋国才, 等. 贵州耕地主要元素地球化学背景值统计与分析[J]. 贵州地质, 2020, 37(3): 233-239. doi: 10.3969/j.issn.1000-5943.2020.03.003 CAI D W, LI L B, JIANG G C, et al. Statistics and analysis of geochemical backgrounds of main elements of cultivated land in Guizhou Province[J]. Guizhou Geology, 2020, 37(3): 233-239 (in Chinese). doi: 10.3969/j.issn.1000-5943.2020.03.003
[36] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8
[37] 陈惠芳, 李艳, 吴豪翔, 等. 富阳市不同类型农田土壤重金属变异特征及风险评价[J]. 生态与农村环境学报, 2013, 29(2): 164-169. doi: 10.3969/j.issn.1673-4831.2013.02.005 CHEN H F, LI Y, WU H X, et al. Characteristics and risk assessment of heavy metals pollution of farmland soils relative to type of land use[J]. Journal of Ecology and Rural Environment, 2013, 29(2): 164-169 (in Chinese). doi: 10.3969/j.issn.1673-4831.2013.02.005
[38] 秦延文, 张雷, 郑丙辉, 等. 太湖表层沉积物重金属赋存形态分析及污染特征[J]. 环境科学, 2012, 33(12): 4291-4299. QIN Y W, ZHANG L, ZHENG B H, et al. Speciation and pollution characteristics of heavy metals in the sediment of Taihu Lake[J]. Environmental Science, 2012, 33(12): 4291-4299 (in Chinese).
[39] MAIZ I, ARAMBARRI I, GARCIA R, et al. Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis[J]. Environmental Pollution, 2000, 110(1): 3-9. doi: 10.1016/S0269-7491(99)00287-0
[40] PUEYO M, LÓPEZ-SÁNCHEZ J F, RAURET G. Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils[J]. Analytica Chimica Acta, 2004, 504(2): 217-226. doi: 10.1016/j.aca.2003.10.047
[41] 奇奇格. 土壤砷生物有效性影响因素研究进展[J]. 安徽农业科学, 2018, 46(28): 15-17. doi: 10.3969/j.issn.0517-6611.2018.28.005 QI Q G. Research progress on influencing factors of soil arsenic bioavailability[J]. Journal of Anhui Agricultural Sciences, 2018, 46(28): 15-17 (in Chinese). doi: 10.3969/j.issn.0517-6611.2018.28.005
[42] 岳国辉. 土壤pH和有机质含量对重金属可利用性的影响[J]. 中国金属通报, 2021(5): 196-197. doi: 10.3969/j.issn.1672-1667.2021.05.097 YUE G H. Effects of soil pH and organic matter content on the availability of heavy metals[J]. China Metal Bulletin, 2021(5): 196-197 (in Chinese). doi: 10.3969/j.issn.1672-1667.2021.05.097
[43] SERAFIMOVSKA J M, ARPADJAN S, STAFILOV T, et al. Study of the antimony species distribution in industrially contaminated soils[J]. Journal of Soils and Sediments, 2013, 13(2): 294-303. doi: 10.1007/s11368-012-0623-9
[44] TSERENPIL S, LIU C Q. Study of antimony (III) binding to soil humic acid from an antimony smelting site[J]. Microchemical Journal, 2011, 98(1): 15-20. doi: 10.1016/j.microc.2010.10.003
[45] FILELLA M, BELZILE N, CHEN Y W. Antimony in the environment: A review focused on natural waters[J]. Earth-Science Reviews, 2002, 57(1/2): 125-176.
[46] PEREIRA F J, LÓPEZ R, SUÁREZ D, et al. pH-dependent structural changes of arsenic oxoacids in solution and solid phase: Raman spectrometry and computational studies[J]. Microchemical Journal, 2022, 175: 107109. doi: 10.1016/j.microc.2021.107109
[47] 戴树桂. 环境化学[M]. 2版. 北京: 高等教育出版社, 2006. DAI S G. Environmental chemistry[M]. 2nd ed. Beijing: Higher Education Press, 2006 (in Chinese).
[48] ZHAO L, SHANGGUAN Y X, YAO N, et al. Soil migration of antimony and arsenic facilitated by colloids in lysimeter studies[J]. The Science of the Total Environment, 2020, 728: 138874. doi: 10.1016/j.scitotenv.2020.138874
[49] WILSON N J, CRAW D, HUNTER K. Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand[J]. Environmental Pollution, 2004, 129(2): 257-266. doi: 10.1016/j.envpol.2003.10.014
[50] HOU H, TAKAMATSU T, KOSHIKAWA M K, et al. Migration of silver, indium, tin, antimony, and bismuth and variations in their chemical fractions on addition to uncontaminated soils[J]. Soil Science, 2005, 170(8): 624-639. doi: 10.1097/01.ss.0000178205.35923.66
[51] AINSWORTH N, COOKE J A, JOHNSON M S. Distribution of antimony in contaminated grassland: 1—Vegetation and soils[J]. Environmental Pollution, 1990, 65(1): 65-77. doi: 10.1016/0269-7491(90)90165-9
[52] HAMMEL W, DEBUS R, STEUBING L. Mobility of antimony in soil and its availability to plants[J]. Chemosphere, 2000, 41(11): 1791-1798. doi: 10.1016/S0045-6535(00)00037-0
[53] 沈城, 叶文娟, 钱诗颖, 等. 典型城市土壤中重金属锑(Sb)的含量分布特征及风险评价[J]. 环境科学, 2022, 43(9): 4791-4799. SHEN C, YE W J, QIAN S Y, et al. Distribution characteristics and risk assessment of antimony in typical urban soil[J]. Environmental Science, 2022, 43(9): 4791-4799 (in Chinese).
[54] 张海琳, 张雨, 王顶, 等. 西南不同类型紫色土土壤pH变化、重金属累积与潜在生态风险评估[J]. 环境科学, 2024, 45(4): 2440-2449. ZHANG H L, ZHANG Y, WANG D, et al. Soil pH change, heavy metal accumulation and potential ecological risk assessment of different types of purple soil in Southwest China[J]. Environmental Science,2024, 45(4): 2440-2449 (in Chinese).
[55] ZHOU W X, HAN G L, LIU M, et al. Vertical distribution and controlling factors exploration of Sc, V, co, Ni, Mo and Ba in six soil profiles of the mun river basin, northeast Thailand[J]. International Journal of Environmental Research and Public Health, 2020, 17(5): 1745. doi: 10.3390/ijerph17051745
[56] KLITZKE S, LANG F. Mobilization of soluble and dispersible lead, arsenic, and antimony in a polluted, organic-rich soil - effects of pH increase and counterion valency[J]. Journal of Environmental Quality, 2009, 38(3): 933-939. doi: 10.2134/jeq2008.0239
[57] 胡青青, 沈强, 陈飞, 等. 重构土壤垂直剖面重金属Cd赋存形态及影响因素[J]. 环境科学, 2020, 41(6): 2878-2888. HU Q Q, SHEN Q, CHEN F, et al. Reconstructed soil vertical profile heavy metal Cd occurrence and its influencing factors[J]. Environmental Science, 2020, 41(6): 2878-2888 (in Chinese).
[58] 王蕊, 陈明, 陈楠, 等. 基于总量及形态的土壤重金属生态风险评价对比: 以龙岩市适中镇为例[J]. 环境科学, 2017, 38(10): 4348-4359. WANG R, CHEN M, CHEN N, et al. Comparison of ecological risk assessment based on the total amount and speciation distribution of heavy metals in soil: A case study for Longyan city, Fujian Province[J]. Environmental Science, 2017, 38(10): 4348-4359 (in Chinese).
[59] 曹勤英, 黄志宏. 污染土壤重金属形态分析及其影响因素研究进展[J]. 生态科学, 2017, 36(6): 222-232. CAO Q Y, HUANG Z H. Review on speciation analysis of heavy metals in polluted soils and its influencing factors[J]. Ecological Science, 2017, 36(6): 222-232 (in Chinese).
[60] HU J, LONG Y C, ZHOU W, et al. Influence of different land use types on hydrochemistry and heavy metals in surface water in the lakeshore zone of the Caohai wetland, China[J]. Environmental Pollution, 2020, 267: 115454. doi: 10.1016/j.envpol.2020.115454
[61] ADAMO P, IAVAZZO P, ALBANESE S, et al. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils[J]. Science of the Total Environment, 2014, 500/501: 11-22. doi: 10.1016/j.scitotenv.2014.08.085
[62] MARRUGO-NEGRETE J, PINEDO-HERNÁNDEZ J, DÍEZ S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia[J]. Environmental Research, 2017, 154: 380-388. doi: 10.1016/j.envres.2017.01.021
[63] 杨新明, 庄涛, 韩磊, 等. 小清河污灌区农田土壤重金属形态分析及风险评价[J]. 环境化学, 2019, 38(3): 644-652. doi: 10.7524/j.issn.0254-6108.2018051001 YANG X M, ZHUANG T, HAN L, et al. Fraction distribution and ecological risk assessment of soil heavy metals in the farmland soil from the sewage irrigated area of Xiaoqing River[J]. Environmental Chemistry, 2019, 38(3): 644-652 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018051001
[64] 丁竹红, 胡忻, 郭红岩. 用通用浸提剂Mehlich3研究城市污泥重金属生物有效性[J]. 环境污染与防治, 2006, 28(7): 485-487,525. doi: 10.3969/j.issn.1001-3865.2006.07.002 DING Z H, HU X, GUO H Y. Bioavailability of heavy metals in municipal sludges using Mehlich3 extractant[J]. Environmental Pollution & Control, 2006, 28(7): 485-487,525 (in Chinese). doi: 10.3969/j.issn.1001-3865.2006.07.002
[65] DELGADO J, BARBA-BRIOSO C, NIETO J M, et al. Speciation and ecological risk of toxic elements in estuarine sediments affected by multiple anthropogenic contributions (Guadiana saltmarshes, SW Iberian Peninsula): I. Surficial sediments[J]. Science of the Total Environment, 2011, 409(19): 3666-3679. doi: 10.1016/j.scitotenv.2011.06.013