[1] TALVENMäKI H, SAARTAMA N, HAUKKA A, et al. In situ bioremediation of Fenton’s reaction–treated oil spill site, with a soil inoculum, slow release additives, and methyl-β-cyclodextrin[J]. Environmental Science and Pollution Research, 2021, 28(16): 20273-20289. doi: 10.1007/s11356-020-11910-w
[2] LOMINCHAR M A, SANTOS A, DE MIGUEL E, et al. Remediation of aged diesel contaminated soil by alkaline activated persulfate[J]. Science of the Total Environment, 2018, 622-623: 41-48. doi: 10.1016/j.scitotenv.2017.11.263
[3] MOUMED I, ARRAR J, NAMANE A, et al. Effects of surfactant and oxidant on bioremediation of contaminated soil by total petroleum hydrocarbons using indigenous bacteria[J]. International Journal of Environmental Science and Technology, 2023, 20(8): 8863-8874. doi: 10.1007/s13762-022-04600-2
[4] ZHOU Q X, SONG C L, WANG P F, et al. Generating dual-active species by triple-atom sites through peroxymonosulfate activation for treating micropollutants in complex water[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(13): 2300085120.
[5] LU S G, ZHANG X, XUE Y F. Application of calcium peroxide in water and soil treatment: A review[J]. Journal of Hazardous Materials, 2017, 337: 163-177. doi: 10.1016/j.jhazmat.2017.04.064
[6] XIE Y H, YANG X N, LI W W, et al. Enhanced removal of glyphosate from aqueous solution by nano-CaO2/AS composite: Oxidation and precipitation[J]. Separation and Purification Technology, 2022, 288: 120349. doi: 10.1016/j.seppur.2021.120349
[7] SUTTON N B, LANGENHOFF A A M, LASSO D H, et al. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils[J]. Applied Microbiology and Biotechnology, 2014, 98(6): 2751-2764. doi: 10.1007/s00253-013-5256-4
[8] AMERHAIDER NUAR N N, MD. JAMIL S N A, LI F, et al. Synthesis of controlled-release calcium peroxide nanoparticles coated with dextran for removal of doxycycline from aqueous system[J]. Polymers, 2022, 14(18): 3866. doi: 10.3390/polym14183866
[9] ZHANG Q F, ZUO M M, LI G H, et al. Synthesis of ammonium persulfate microcapsule with a polyaniline shell and its controlled burst release[J]. Journal of Applied Polymer Science, 2021, 138(3): 49695. doi: 10.1002/app.49695
[10] RASTINFARD A, NAZARPAK M H, MOZTARZADEH F. Controlled chemical synthesis of CaO2 particles coated with polyethylene glycol: characterization of crystallite size and oxygen release kinetics[J]. Rsc Advances, 2018, 8(1): 91-101. doi: 10.1039/C7RA08758F
[11] TANG X J, YU C Y, LEI Y Y, et al. A novel chitosan-urea encapsulated material for persulfate slow-release to degrade organic pollutants[J]. Journal of Hazardous Materials, 2022, 426: 128083. doi: 10.1016/j.jhazmat.2021.128083
[12] BUI T H, LEE W, JEON S B, et al. Enhanced Gold(III) adsorption using glutaraldehyde-crosslinked chitosan beads: Effect of crosslinking degree on adsorption selectivity, capacity, and mechanism[J]. Separation and Purification Technology, 2020, 248: 116989. doi: 10.1016/j.seppur.2020.116989
[13] LEE C S, LE THANH T, KIM E J, et al. Fabrication of novel oxygen-releasing alginate beads as an efficient oxygen carrier for the enhancement of aerobic bioremediation of 1, 4-dioxane contaminated groundwater[J]. Bioresource Technology, 2014, 171: 59-65. doi: 10.1016/j.biortech.2014.08.039
[14] CHRISTENSON M, KAMBHU A, REECE J, et al. A five-year performance review of field-scale, slow-release permanganate candles with recommendations for second-generation improvements[J]. Chemosphere, 2016, 150: 239-247. doi: 10.1016/j.chemosphere.2016.01.125
[15] SONG Y, FANG G D, ZHU C Y, et al. Zero-valent iron activated persulfate remediation of polycyclic aromatic hydrocarbon-contaminated soils: An in situ pilot-scale study[J]. Chemical Engineering Journal, 2019, 355: 65-75. doi: 10.1016/j.cej.2018.08.126
[16] MEDINA R, GARA P M D, FERNáNDEZ-GONZáLEZ A J, et al. Remediation of a soil chronically contaminated with hydrocarbons through persulfate oxidation and bioremediation[J]. Science of the Total Environment, 2018, 618: 518-530. doi: 10.1016/j.scitotenv.2017.10.326
[17] FOOLADI M, MOOGOUEI R, JOZI S A, et al. Phytoremediation of BTEX from indoor air by Hyrcanian plants[J]. Environmental Health Engineering and Management Journal, 2019, 6(4): 233-240. doi: 10.15171/EHEM.2019.26
[18] SHEN H F, SHAO Z W, ZHAO Q F, et al. Facile synthesis of novel three-dimensional Bi2S3 nanocrystals capped by polyvinyl pyrrolidone to enhance photocatalytic properties under visible light[J]. Journal of Colloid and Interface Science, 2020, 573: 115-122. doi: 10.1016/j.jcis.2020.03.111
[19] CHEN J, MA H, LUO H, et al. Influencing factors and controlled release kinetics of H2O2 from PVP-coated calcium peroxide NPs for groundwater remediation[J]. Journal of Hazardous Materials, 2023, 464: 132902.
[20] YUAN X H, YU S T, XUE N D, et al. Persulfate activation with sodium alginate/sulfide coated iron nanoparticles for degradation of tetrabromobisphenol a in soil[J]. Environmental Research, 2023, 221: 114820. doi: 10.1016/j.envres.2022.114820
[21] TANG X J, LI Z W, WANG Z, et al. Efficient remediation of PAHs contaminated site soil using the novel slow-release oxidant material[J]. Chemical Engineering Journal, 2023, 472: 144713. doi: 10.1016/j.cej.2023.144713
[22] KANSWAMI N, REDDY R A, LAKSHMI P K. Stable solid dispersion incorporated sustained release oral gel of 23 mg donepezil HCl for the treatment of alzheimer disease[J]. International Journal of Life Science and Pharma Research, 2020: 6: 36-42.
[23] CORVIS Y, NéGRIER P, ESPEAU P. Physicochemical stability of solid dispersions of enantiomeric or racemic ibuprofen in stearic acid[J]. Journal of Pharmaceutical Sciences, 2011, 100(12): 5235-5243. doi: 10.1002/jps.22727
[24] HARIKRISHNAN S, MAGESH S, KALAISELVAM S. Preparation and thermal energy storage behaviour of stearic acid-TiO2 nanofluids as a phase change material for solar heating systems[J]. Thermochimica Acta, 2013, 565: 137-145. doi: 10.1016/j.tca.2013.05.001
[25] BIESINGER M C, PAYNE B P, GROSVENOR A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni[J]. Applied Surface Science, 2011, 257(7): 2717-2730. doi: 10.1016/j.apsusc.2010.10.051
[26] DAVID FRIEDL J, WIBEL R, BURCU AKKUş-DAğDEVIREN Z, et al. Reactive oxygen species (ROS) in colloidal systems: Are “PEG-free” surfactants the answer[J]. Journal of Colloid and Interface Science, 2022, 616: 571-583. doi: 10.1016/j.jcis.2022.02.092
[27] ZHANG M Y, DONG Y, GAO S, et al. Effective stabilization and distribution of emulsified nanoscale zero-valent iron by xanthan for enhanced nitrobenzene removal[J]. Chemosphere, 2019, 223: 375-382. doi: 10.1016/j.chemosphere.2019.02.099
[28] XU Q, CHEN J J, SONG X R. Assessment of the rheological behavior of polymer-oxidant mixtures and the influence of the groundwater environment on their properties[J]. Water, 2019, 11(8): 1698. doi: 10.3390/w11081698
[29] BOULANGé M, LORGEOUX C, BIACHE C, et al. Fenton-like and potassium permanganate oxidations of PAH-contaminated soils: Impact of oxidant doses on PAH and polar PAC (polycyclic aromatic compound) behavior[J]. Chemosphere, 2019, 224: 437-444. doi: 10.1016/j.chemosphere.2019.02.108
[30] LIU D F, REN L M, WEN C Y, et al. Investigation of the compatibility of xanthan gum (XG) and calcium polysulfide and the rheological properties of XG solutions[J]. Environmental Technology, 2018, 39(5): 607-615. doi: 10.1080/09593330.2017.1309073
[31] LIU Y S, CHEN J J, WANG Q W, et al. The principle and effect of transfer agent for the removal of PCE during in situ chemical oxidation[J]. Environmental Science and Pollution Research, 2017, 24(26): 21011-21023. doi: 10.1007/s11356-017-9411-9