[1] |
LI P, KARUNANIDHI D, SUBRAMANI T, et al. Sources and consequences of groundwater contamination[J]. Archives of Environmental Contamination and Toxicology, 2021, 80(1): 1-10. doi: 10.1007/s00244-020-00805-z
|
[2] |
杨萌, 翁仕龙, 潘怡然, 等. 地下水污染修复技术研究进展[J]. 环境科学与管理, 2022, 47(4): 118-122. doi: 10.3969/j.issn.1673-1212.2022.04.027
|
[3] |
王朋, 陈文英, 蒲生彦. 地下水循环井原位强化生物修复技术研究进展[J]. 安全与环境工程, 2021, 28(3): 137-146.
|
[4] |
赵勇胜. 地下水污染场地的控制与修复[M]. 科学出版社, 2015.
|
[5] |
徐林建, 孙加山, 李燕明, 等. 地下水循环井技术的研究进展及应用分析[J]. 中国资源综合利用, 2020, 38(5): 83-85. doi: 10.3969/j.issn.1008-9500.2020.05.026
|
[6] |
蒲生彦, 王宇, 王朋. 地下水循环井修复技术与应用: 关键问题、主要挑战及解决策略[J]. 安全与环境工程, 2021, 28(3): 78-86.
|
[7] |
ROSS D P, GARY R W. Prediction of flow and hydraulic head fields for vertical circulation wells[J]. Groundwater, 1992, 30(5): 765-773. doi: 10.1111/j.1745-6584.1992.tb01562.x
|
[8] |
朱棋. 含水层污染原位修复中的循环井模型研究及其应用[D]. 武汉: 中国地质大学, 2021.
|
[9] |
程大伟, 冯申, 杨胜科, 等. 循环井技术对低渗透性透镜体二级污染源的修复效率评估方法[J]. 环境科学学报, 2022, 42(8): 222-235.
|
[10] |
丁小凡. 循环井水力驱动三维环流数值模拟及循环效果研究[D]. 长春: 吉林大学, 2022.
|
[11] |
HUANG J, GOLTZ M N. A three-dimensional analytical model to simulate groundwater flow during operation of recirculating wells[J]. Journal of Hydrology, 2005, 314: 67-77. doi: 10.1016/j.jhydrol.2005.03.039
|
[12] |
WANG P, LI J, AN P, et al. Enhanced delivery of remedial reagents in low-permeability aquifers through coupling with groundwater circulation well[J]. Journal of Hydrology, 2023, 618: 129260. doi: 10.1016/j.jhydrol.2023.129260
|
[13] |
CIAMPI P, ESPOSITO C, PETRANGELI P, et al. Hydrogeochemical model supporting the remediation strategy of a highly contaminated industrial site[J]. Water, 2019, 11(7): 1371. doi: 10.3390/w11071371
|
[14] |
JOHN A C, MARK N G, JUNQI H. Development and application of an analytical model to aid design and implementation of in situ remediation technologies[J]. Journal of Contaminant Hydrology, 1999, 37(3): 295-317.
|
[15] |
LUO J, JI Y, LU W. Comparison of surrogate models based on different sampling methods for groundwater remediation[J]. Journal of Water Resources Planning and Management, 2019, 145(5): 04019015. doi: 10.1061/(ASCE)WR.1943-5452.0001062
|
[16] |
章勇. 两种深度学习算法在地下水模拟中的应用[D]. 南京: 南京大学, 2021.
|
[17] |
LÄHIVAARA T, MALEHMIR A, PASANEN A, et al. Estimation of groundwater storage from seismic data using deep learning[J]. Geophysical Prospecting, 2019, 67(8): 2115-2126. doi: 10.1111/1365-2478.12831
|
[18] |
HONG J, LIU J. Rapid estimation of permeability from digital rock using 3D convolutional neural network[J]. Computational Geosciences, 2020, 24(4): 1523-1539. doi: 10.1007/s10596-020-09941-w
|
[19] |
苗竹, 吕正勇, 魏丽, 等. 地下水循环井技术概述[A]. 2018中国环境科学学会科学技术年会[C], 2018.
|
[20] |
TATTI F, PAPINI M P, SAPPA G, et al. Contaminant back-diffusion from low-permeability layers as affected by groundwater velocity: a laboratory investigation by box model and image analysis[J]. Science of the Total Environment, 2018, 622–623(1): 164-171.
|
[21] |
赵思远, 方樟, 周睿, 等. 基于机器学习MLR模型的地下水循环井优化设计[J]. 安全与环境工程, 2023, 30(1): 192-198.
|
[22] |
孙冉冉. 电强化地下水循环井对有机污染场地的修复研究[D]. 上海: 东华大学, 2017.
|
[23] |
LEAF A T, FIENEN M N. Flopy: the python interface for MODFLOW[J]. Ground Water, 2022, 60(6): 710-712. doi: 10.1111/gwat.13259
|
[24] |
POLLOCK, DAVID W. Extending the MODPATH algorithm to rectangular unstructured grids[J]. Ground Water, 2016, 54(1): 121-125. doi: 10.1111/gwat.12328
|
[25] |
ZONG Y, VALOCCHI A J, LIN Y. Coupling a borehole thermal model and MT3DMS to simulate dynamic ground source heat pump efficiency[J]. Ground Water, 2023, 61(2): 237-244. doi: 10.1111/gwat.13159
|
[26] |
周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251. doi: 10.11897/SP.J.1016.2017.01229
|
[27] |
XIA Q, ZHANG Q, MO X, et al. Visualizing hydraulic zones of a vertical circulation well in presence of ambient flow[J]. Desalination and Water Treatment, 2019, 159: 151-160. doi: 10.5004/dwt.2019.24098
|
[28] |
LIU Y, TANG Q, TIAN X, et al. A novel offline programming approach of robot welding for multi-pipe intersection structures based on NSGA-Ⅱ and measured 3D point-clouds[J]. Robotics and Computer-Integrated Manufacturing, 2023, 83: 102549. doi: 10.1016/j.rcim.2023.102549
|