[1] JONGMOON C, PEMA D, HO K S, et al. Applications of capacitive deionization: Desalination, softening, selective removal, and energy efficiency[J]. Desalination, 2019, 449: 118-130. doi: 10.1016/j.desal.2018.10.013
[2] DOMENICO C, VINCENZO F, ANDREA G. A review of the water desalination technologies[J]. Applied Sciences 2021, 11(2): 2-36.
[3] WANG J, SHI Z L, FANG J, et al. The optimized flow-electrode capacitive deionization (FCDI) performance by ZIF-8 derived nanoporous carbon polyhedron[J]. Separation and Purification Technology 2022, 281: 119345.
[4] 吴擎昊, 马秀梅, 卢善富, 等. 利用活性碳毡构建流通式电容去离子器件及其电容脱盐性能研究[J]. 环境科学学报, 2018, 38(4): 1509-1513.
[5] 刘洁, 王晓菊, 沈格, 等. 活性炭与炭黑混合电极的脱盐性能及相关工艺参数的优化[J]. 环境工程学报, 2022, 16(3): 875-885. doi: 10.12030/j.cjee.202111108
[6] WU Q H, LIANG D W, LU S F, et al. Advances and perspectives in integrated membrane capacitive deionization for water desalination[J]. Desalination 2022, 542: 116043.
[7] ZHANG C Y, MA J X, WU L, et al. Flow electrode capacitive deionization (FCDI): Recent developments, environmental applications, and future perspectives[J]. Environmental Science & Technology 2021, 55(8): 4243-4267.
[8] ABDULLAH A, ABDULRAHMAN A, KHALED A, et al. Surface-treated carbon black for durable, efficient, continuous flow electrode capacitive deionization[J]. Separation and Purification Technology 2023, 313: 123444.
[9] CAI Y M, ZHAO X T, WANG Y, et al. Enhanced desalination performance utilizing sulfonated carbon nanotube in the flow-electrode capacitive deionization process[J]. Separation and Purification Technology 2020, 237: 116381.
[10] AINOA M S, JOSE A P, MARIA I F, et al. Adsorption of Direct Blue 78 Using Chitosan and Cyclodextrins as Adsorbents[J]. Polymers 2019, 11(6): 2-18.
[11] LIANG P, SUN, X L, BIAN, Y H, et al. Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode[J]. Desalination 2017, 420: 63-69.
[12] CHO Y, YOO C Y, LEE S W, et al. Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes[J]. Water Research 2019, 151: 252-259.
[13] BILEN A, PUSHPENDRA S, DEVON A E, et al. Percolation characteristics of conductive additives for capacitive flowable (semi-solid) electrodes[J]. ACS Applied Materials & Interfaces 2020, 12(5): 5866-5875.
[14] FAN L Z, QIAO S Y, SONG W L. Effects of the functional groups on the electrochemical properties of ordered porous carbon for supercapacitors[J]. Electrochimica Acta 2013, 105: 299-304.
[15] LI X R, JIANG Y H, WANG P Z, et al. Effect of the oxygen functional groups of activated carbon on its electrochemical performance for supercapacitors[J]. New Carbon Materials 2020, 35(3): 232-243.
[16] MA J J, ZHANG C Y, YANG F, et al. Carbon black flow electrode enhanced electrochemical desalination using single-cycle operation[J]. Environmental Science & Technology 2019, 54(2): 1177-1185.
[17] KUNDU S, WANG Y M, XIA W, et al. Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: A quantitative high-resolution XPS and TPD/ TPR study[J]. Journal of Physical Chemistry C, 2008, 112: 16869-16878. doi: 10.1021/jp804413a
[18] OH H J, LEE J H, AHN H J, et al. Nanoporous activated carbon cloth for capacitive deionization of aqueous solution[J]. Thin Solid Films 2006, 515(1): 220-225.
[19] YAO F B, YANG Q, YAN M, et al. Synergistic adsorption and electrocatalytic reduction of bromate by Pd/N-doped loofah sponge-derived biochar electrode[J]. Journal of Hazardous Materials 2020, 386 121651.
[20] CHENG Y, HAO Z, HAO C, et al. A review of modification of carbon electrode material in capacitive deionization[J]. RSC Advances 2019, 9(42): 24401-24419.
[21] HUANG W, ZHANG Y M, BAO S X, et al. Desalination by capacitive deionization process using nitric acid-modified activated carbon as the electrodes[J]. Desalination 2014, 340: 67-72.
[22] MYKOLA S, DENISA H J, GAO Q L, et al. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance[J]. Carbon 2008, 46(11): 1475-1488.
[23] NIE C Y, PAN L K, LIU Y, et al. Electrophoretic deposition of carbon nanotubes–polyacrylic acid composite film electrode for capacitive deionization[J]. Electrochimica Acta 2012, 66: 106-109.
[24] 谷峪. 多孔碳电极材料的常温氧化改性及其超级电容性能研究[D]. 秦皇岛: 燕山大学, 2022.
[25] 刘奇杰, 吴珍珍, 江鸿雁, 等. 碳材料改性提高吸附性能的研究进展[J]. 广州化工, 2022, 50(8): 40-41. doi: 10.3969/j.issn.1001-9677.2022.08.013
[26] KELSEY B H, MARTA C H, KEVIN M C, et al. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization[J]. Environmental Science & Technology 2015, 49(5): 3040-3047.
[27] LUO Q, CHENG Z Y, QIU Y F, et al. Effect of surface hydrophilicity on the supercapacitive performance of carbon paper[J]. Ionics 2017, 23(7): 1915-1920.