[1] ABBASI G, LI L, BREIVIK K. Global historical stocks and emissions of PBDEs[J]. Environmental Science & Technology, 2019, 53(11): 6330-6340.
[2] CHUPEAU Z, MERCIER F, ROUXEL E, et al. Pre- and post-natal exposure of children to organophosphate flame retardants: A nationwide survey in France[J]. Environment International, 2022, 168: 107435. doi: 10.1016/j.envint.2022.107435
[3] PEI J, YAO H, WANG H, et al. Polybrominated diphenyl ethers (PBDEs) in water, surface sediment, and suspended particulate matter from the Yellow River, China: Levels, spatial and seasonal distribution, and source contribution[J]. Marine Pollution Bulletin, 2018, 129(1): 106-113. doi: 10.1016/j.marpolbul.2018.02.017
[4] QI J, WANG X L, FAN L, et al. Levels, distribution, childhood exposure assessment, and influencing factors of polybrominated diphenyl ethers (PBDEs) in household dust from nine cities in China[J]. Science of the Total Environment, 2023, 874: 162612. doi: 10.1016/j.scitotenv.2023.162612
[5] ZHUANG J, PAN Z J, QIN Y, et al. Evaluation of BDE-47-induced neurodevelopmental toxicity in zebrafish embryos[J]. Environmental Science and Pollution Research, 2023, 30(18): 54022-54034. doi: 10.1007/s11356-023-26170-7
[6] CHEN F, FENG L, ZHENG Y L, et al. 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) induces mitochondrial dysfunction and related liver injury via eliciting miR-34a-5p-mediated mitophagy impairment[J]. Environmental Pollution, 2020, 258: 113693. doi: 10.1016/j.envpol.2019.113693
[7] GAO Q, ZHOU Z Y, HE Y N, et al. BDE-47 induces immunotoxicity in RAW264.7 macrophages through the reactive oxygen species-mediated mitochondrial apoptotic pathway[J]. Molecules, 2023, 28(5): 2036. doi: 10.3390/molecules28052036
[8] LEE H J, KIM G B, LEE R F. Genotoxicity and development effects of brominated flame retardant PBDEs and UV-exposed PBDEs on grass shrimp ( Palaemonetes pugio) embryo[J]. Marine Pollution Bulletin, 2012, 64(12): 2892-2895. doi: 10.1016/j.marpolbul.2012.08.010
[9] XIE B M, LIN X Q, WU K S, et al. Adipose tissue levels of polybrominated diphenyl ethers in relation to prognostic biomarkers and progression-free survival time of breast cancer patients in eastern area of Southern China: A hospital-based study[J]. Environmental Research, 2023, 216(Pt 4): 114779.
[10] BELTRÁN E M, GONZÁLEZ-DONCEL M, GARCÍA-MAURIÑO J E, et al. Effects of life cycle exposure to dietary 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) on medaka fish ( Oryzias latipes)[J]. Aquatic Toxicology, 2022, 245: 106133. doi: 10.1016/j.aquatox.2022.106133
[11] 耿倩倩, 郭萌萌, 李风铃, 等. BDE-47在紫贻贝中的分布、蓄积、消除和毒性效应[J]. 中国环境科学, 2022, 42(3): 1385-1393. GENG Q Q, GUO M M, LI F L, et al. Tissue distribution, accumulation, elimination characteristics and toxicity of 2, 2’, 4, 4’-tetrabromodiphenyl ether in blue mussel[J]. China Environmental Science, 2022, 42(3): 1385-1393 (in Chinese).
[12] PROVENZA F, RAMPIH D, PIGNATTELLI S, et al. Mussel watch program for microplastics in the Mediterranean Sea: Identification of biomarkers of exposure using Mytilus galloprovincialis[J]. Ecological Indicators, 2022, 142: 109212. doi: 10.1016/j.ecolind.2022.109212
[13] ESPINOSA RUIZ C, MORGHESE M, RENDA G, et al. Effects of BDE-47 exposure on immune-related parameters of Mytilus galloprovincialis[J]. Aquatic Toxicology, 2019, 215: 105266. doi: 10.1016/j.aquatox.2019.105266
[14] 董梦洁, 李兴红. 我国典型电子垃圾循环地区人体血清中多溴联苯醚浓度与特征的时间变化趋势[J]. 环境化学, 2020, 39(6): 1504-1512. DONG M J, LI X H. Temporal changes in the profiles and concentrations of polybrominated diphenyl ethers in human serum collected from a typical e-waste recycling area in China[J]. Environmental Chemistry, 2020, 39(6): 1504-1512 (in Chinese).
[15] GENG Q Q, GUO M M, WU H Y, et al. Effects of single and combined exposure to BDE-47 and PFOA on distribution, bioaccumulation, and toxicity in blue mussel ( Mytilus galloprovincialis)[J]. Ecotoxicology and Environmental Safety, 2021, 228: 113014. doi: 10.1016/j.ecoenv.2021.113014
[16] WACŁAWEK S, KRAWCZYK K, SILVESTRI D, et al. Cyclodextrin-based strategies for removal of persistent organic pollutants[J]. Advances in Colloid and Interface Science, 2022, 310: 102807. doi: 10.1016/j.cis.2022.102807
[17] 任佰萍. 环糊精与典型持久性有机污染物的相互作用及对其生物降解的影响[D]. 大连: 大连理工大学, 2020: 56-60. REN B P. Interactions of cyclodextrins with typical persistent organic pollutants and effects of their conjugates on the biodegration of organic pollutants[D]. Dalian: Dalian University of Technology, 2020: 56-60 (in Chinese).
[18] de FÁTIMA ABREU VENCESLAU A, dos SANTOS F E, de FÁTIMA SILVA A, et al. Cyclodextrins as effective tools to reduce the toxicity of atrazine[J]. Energy, Ecology and Environment, 2018, 3(2): 81-86. doi: 10.1007/s40974-017-0073-8
[19] GENG Q Q, XIE J C, WANG X, et al. Preparation and characterization of butachlor/(2-hydroxypropyl)-β-cyclodextrin inclusion complex: Improve soil mobility and herbicidal activity and decrease fish toxicity[J]. Journal of Agricultural and Food Chemistry, 2018, 66(46): 12198-12205. doi: 10.1021/acs.jafc.8b04812
[20] FLISZÁR-NYÚL E, BOCK I, CSEPREGI R, et al. Testing the protective effects of cyclodextrins vs. alternariol-induced acute toxicity in HeLa cells and in zebrafish embryos[J]. Environmental Toxicology and Pharmacology, 2022, 95: 103965. doi: 10.1016/j.etap.2022.103965
[21] LUDA M P, ZANETTI M. Cyclodextrins and cyclodextrin derivatives as green char promoters in flame retardants formulations for polymeric materials. A review[J]. Polymers, 2019, 11(4): 664. doi: 10.3390/polym11040664
[22] 王银, 罗姣, 王光辉. 甘氨酸-β-环糊精对西玛津和镉的毒性影响研究[J]. 环境污染与防治, 2014, 36(2): 19-22. WANG Y, LUO J, WANG G H. Study on the effect of glycine- β-cyclodextrin on toxicity of simazine and Cd[J]. Environmental Pollution & Control, 2014, 36(2): 19-22 (in Chinese).
[23] KOMOLAFE O, BOWLER B, DOLFING J, et al. Quantification of polybrominated diphenyl ether (PBDE) congeners in wastewater by gas chromatography with electron capture detector (GC-ECD)[J]. Analytical Methods, 2019, 11(27): 3474-3482. doi: 10.1039/C9AY00266A
[24] 迟潇, 陈碧鹃, 孙雪梅, 等. 基于IBR模型研究BDE-47和BDE-153对半滑舌鳎的毒性效应[J]. 生态毒理学报, 2020, 15(4): 192-202. doi: 10.7524/AJE.1673-5897.20190726001 CHI X, CHEN B J, SUN X M, et al. Toxic effects of BDE-47 and BDE-153 on Cynoglossus semilaevis Gunther based on IBR model[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 192-202 (in Chinese). doi: 10.7524/AJE.1673-5897.20190726001
[25] LIU C C, WANG B Y, ZHOU B, et al. The responses of Oncorhynchus mykiss coping with BDE-47 stress via PXR-mediated detoxification and Nrf2-mediated antioxidation system[J]. Aquatic Toxicology, 2019, 207: 63-71. doi: 10.1016/j.aquatox.2018.11.026
[26] LARSSON J, SMOLARZ K, ŚWIEŻAK J, et al. Multi biomarker analysis of pollution effect on resident populations of blue mussels from the Baltic Sea[J]. Aquatic Toxicology, 2018, 198: 240-256. doi: 10.1016/j.aquatox.2018.02.024
[27] WEI X J, WANG Q, LIU C. Nanopore sensing of γ-cyclodextrin induced host-guest interaction to reverse the binding of perfluorooctanoic acid to human serum albumin[J]. Proteomics, 2022, 22(5/6): e2100058.
[28] PERERA N L D, MIKSOVSKA J, O'SHEA K E. Elucidation of specific binding sites and extraction of toxic Gen X from HSA employing cyclodextrin[J]. Journal of Hazardous Materials, 2022, 425: 127765. doi: 10.1016/j.jhazmat.2021.127765
[29] 邹德菲. 环糊精对有机物的模拟生物膜吸收性能的影响[D]. 大连: 大连理工大学, 2014: 32-33. ZOU D F. Effect of cyclodextrins on mimic bio-membrane absorption of organic chemicals[D]. Dalian: Dalian University of Technology, 2014: 32-33 (in Chinese).
[30] LIU Y M, YANG M, ZHENG L, et al. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to toxic Microcystis aeruginosa and thermal stress[J]. Science of the Total Environment, 2020, 743: 140754. doi: 10.1016/j.scitotenv.2020.140754
[31] VIDAL-LIÑÁN L, BELLAS J, FUMEGA J, et al. Bioaccumulation of BDE-47 and effects on molecular biomarkers acetylcholinesterase, glutathione- S-transferase and glutathione peroxidase in Mytilus galloprovincialis mussels[J]. Ecotoxicology, 2015, 24(2): 292-300. doi: 10.1007/s10646-014-1377-5
[32] 蒋安祺, 刘慧, 王为木. 纳米ZnO对中华圆田螺的氧化应激效应[J]. 环境化学, 2017, 36(4): 892-897. doi: 10.7524/j.issn.0254-6108.2017.04.2016102505 JIANG A Q, LIU H, WANG W M. Oxidative stress of nano ZnO on Cipangopaludina cahayensis[J]. Environmental Chemistry, 2017, 36(4): 892-897 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017.04.2016102505
[33] CANLI E G, BAYKOSE A, USLU L H, et al. Changes in energy reserves and responses of some biomarkers in freshwater mussels exposed to metal-oxide nanoparticles[J]. Environmental Toxicology and Pharmacology, 2023, 98: 104077. doi: 10.1016/j.etap.2023.104077
[34] ZHENG Q, FENG M B, DAI Y. Comparative antioxidant responses in liver of Carassius auratus exposed to phthalates: An integrated biomarker approach[J]. Environmental Toxicology and Pharmacology, 2013, 36(3): 741-749. doi: 10.1016/j.etap.2013.07.008
[35] MESSINA C M, ESPINOSA RUIZ C, REGOLI F, et al. BDE-47 exposure modulates cellular responses, oxidative stress and biotransformation related-genes in Mytilus galloprovincialis[J]. Fish & Shellfish Immunology, 2020, 107(Pt B): 537-546.
[36] SONG M Q, WANG Y J, CHEN Z H, et al. Human CYP enzyme-activated genotoxicity of 2, 2’, 4, 4’-tetrabromobiphenyl ether in mammalian cells[J]. Chemosphere, 2022, 291: 132784. doi: 10.1016/j.chemosphere.2021.132784