[1] |
ZHANG M, HE F, ZHAO D Y, et al. Transport of stabilized iron nanoparticles in porous media: Effects of surface and solution chemistry and role of adsorption[J]. Journal of Hazardous Materials, 2017, 322: 284-291. doi: 10.1016/j.jhazmat.2015.12.071
|
[2] |
MONDAL A, DUBEY B K, ARORA M, et al. Porous media transport of iron nanoparticles for site remediation application: A review of lab scale column study, transport modelling and field-scale application[J]. Journal of Hazardous Materials, 2021, 403: 123443.
|
[3] |
GONG L, SHI S S, LV N, et al. Sulfidation enhances stability and mobility of carboxymethyl cellulose stabilized nanoscale zero-valent iron in saturated porous media[J]. Science of the Total Environment, 2020, 718: 137427. doi: 10.1016/j.scitotenv.2020.137427
|
[4] |
XU W Q, LI Z J, SHI S S, et al. Carboxymethyl cellulose stabilized and sulfidated nanoscale zero-valent iron: Characterization and trichloroethene dechlorination[J]. Applied Catalysis B:Environmental, 2020, 262: 118303.
|
[5] |
DONG H R, ZHAO F, ZENG G M, et al. Aging study on carboxymethyl cellulose-coated zero-valent iron nanoparticles in water: Chemical transformation and structural evolution[J]. Journal of Hazardous Materials, 2016, 312: 234-242. doi: 10.1016/j.jhazmat.2016.03.069
|
[6] |
LIU G S, ZHONG H A, AHMAD Z, et al. Transport of engineered nanoparticles in porous media and its enhancement for remediation of contaminated groundwater[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(22): 2301-2378. doi: 10.1080/10643389.2019.1694823
|
[7] |
FAZELI SANGANI M, OWENS G, FOTOVAT A. Transport of engineered nanoparticles in soils and aquifers[J]. Environmental Reviews, 2019, 27(1): 43-70.
|
[8] |
CHEN B, LV N, XU W F, et al. Transport of nanoscale zero-valent iron in saturated porous media: Effects of grain size, surface metal oxides, and sulfidation[J]. Chemosphere, 2023, 313: 137512. doi: 10.1016/j.chemosphere.2022.137512
|
[9] |
KIM S B, PARK S J, LEE C G, et al. Transport and retention of Escherichia coli in a mixture of quartz, Al-coated and Fe-coated sands[J]. Hydrological Processes, 2008, 22(18): 3856-3863.
|
[10] |
ZHUANG J, JIN Y. Interactions between viruses and goethite during saturated flow: Effects of solution pH, carbonate, and phosphate[J]. Journal of Contaminant Hydrology, 2008, 98(1/2): 15-21.
|
[11] |
WANG D J, BRADFORD S A, HARVEY R W, et al. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand[J]. Environmental Science & Technology, 2012, 46(5): 2738-2745.
|
[12] |
JOHNSON R L, JOHNSON G O, NURMI J T, et al. Natural organic matter enhanced mobility of nano zerovalent iron[J]. Environmental Science & Technology, 2009, 43(14): 5455-5460.
|
[13] |
PELLEY A J, TUFENKJI N. Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media[J]. Journal of Colloid and Interface Science, 2008, 321(1): 74-83. doi: 10.1016/j.jcis.2008.01.046
|
[14] |
MYLON S E, CHEN K L, ELIMELECH M. Influence of natural organic matter and ionic composition on the kinetics and structure of hematite colloid aggregation: Implications to iron depletion in estuaries[J]. Langmuir, 2004, 20(21): 9000-9006. doi: 10.1021/la049153g
|
[15] |
WU Y N, DONG H R, TANG L, et al. Influence of humic acid and its different molecular weight fractions on sedimentation of nanoscale zero-valent iron[J]. Environmental Science and Pollution Research, 2020, 27(3): 2786-2796. doi: 10.1007/s11356-019-07140-4
|
[16] |
DONG H R, LO I M C. Influence of calcium ions on the colloidal stability of surface-modified nano zero-valent iron in the absence or presence of humic acid[J]. Water Research, 2013, 47(7): 2489-2496. doi: 10.1016/j.watres.2013.02.022
|
[17] |
LIANG B, XIE Y Y, FANG Z Q, et al. Assessment of the transport of polyvinylpyrrolidone-stabilised zero-valent iron nanoparticles in a silica sand medium[J]. Journal of Nanoparticle Research, 2014, 16(7): 2485. doi: 10.1007/s11051-014-2485-0
|
[18] |
YANG X Y, DENG S H, WIESNER M R. Comparison of enhanced microsphere transport in an iron-oxide-coated porous medium by pre-adsorbed and co-depositing organic matter[J]. Chemical Engineering Journal, 2013, 230: 537-546.
|
[19] |
WU W P, HAN L, NIE X, et al. Effects of multiple injections on the transport of CMC-nZVI in saturated sand columns[J]. Science of the Total Environment, 2021, 784: 147160. doi: 10.1016/j.scitotenv.2021.147160
|
[20] |
HE F, ZHAO D Y, LIU J C, et al. Stabilization of Fe–Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater[J]. Industrial & Engineering Chemistry Research, 2007, 46(1): 29-34.
|
[21] |
FATISSON J, GHOSHAL S, TUFENKJI N. Deposition of carboxymethylcellulose-coated zero-valent iron nanoparticles onto silica: Roles of solution chemistry and organic molecules[J]. Langmuir, 2010, 26(15): 12832-12840.
|
[22] |
赵凤. 羧甲基纤维素修饰纳米零价铁在水环境中的腐蚀老化研究[D]. 长沙: 湖南大学, 2017.
ZHAO F. Aging study on carboxymethyl cellulose-coated zero-valent iron nanoparticles in aqueous environment[D]. Changsha: Hunan University, 2017 (in Chinese).
|
[23] |
YANG X, FLYNN R, von der KAMMER F, et al. Quantifying the influence of humic acid adsorption on colloidal microsphere deposition onto iron-oxide-coated sand[J]. Environmental Pollution, 2010, 158(12): 3498-3506.
|
[24] |
YANG X Y, ZHANG Y M, CHEN F M, et al. Interplay of natural organic matter with flow rate and particle size on colloid transport: Experimentation, visualization, and modeling[J]. Environmental Science & Technology, 2015, 49(22): 13385-13393.
|
[25] |
唐章, 杨新瑶, 闫馨予, 等. 腐植酸和Cd2+对黏土胶粒在饱和多孔介质中迁移的影响[J]. 农业环境科学学报, 2019, 38(1): 111-116. doi: 10.11654/jaes.2018-0056
TANG Z, YANG X Y, YAN X Y, et al. Influence of humic acid and cadmium on the transport of clay colloids in saturated porous media[J]. Journal of Agro-Environment Science, 2019, 38(1): 111-116 (in Chinese). doi: 10.11654/jaes.2018-0056
|
[26] |
WANG C, BOBBA A D, ATTINTI R, et al. Retention and transport of silica nanoparticles in saturated porous media: Effect of concentration and particle size[J]. Environmental Science & Technology, 2012, 46(13): 7151-7158.
|
[27] |
ELIMELECH M, GREGORY J, JIA X, et al. Transport of colloidal materials in ground water[M]//Particle Deposition and Aggregation. Amsterdam: Elsevier, 1995: 361-375.
|
[28] |
浦喆, 杨新瑶, 于丹, 等. 酸适应降低鼠伤寒沙门氏菌在天然土壤中迁移能力[J]. 农业环境科学学报, 2022, 41(12): 2705-2710. doi: 10.11654/jaes.2022-1185
PU Z, YANG X Y, YU D, et al. Acid adaptation reduces the transport ability of Salmonella typhimurium in natural soil[J]. Journal of Agro-Environment Science, 2022, 41(12): 2705-2710 (in Chinese). doi: 10.11654/jaes.2022-1185
|
[29] |
KRETZSCHMAR R, BARMETTLER K, GROLIMUND D, et al. Experimental determination of colloid deposition rates and collision efficiencies in natural porous media[J]. Water Resources Research, 1997, 33(5): 1129-1137. doi: 10.1029/97WR00298
|
[30] |
BIAN H, WAN J, MUHAMMAD T, et al. Computational study and optimization experiment of nZVI modified by anionic and cationic polymer for Cr(VI) stabilization in soil: Kinetics and response surface methodology (RSM)[J]. Environmental Pollution, 2021, 276: 116745. doi: 10.1016/j.envpol.2021.116745
|
[31] |
ELJAMAL R, ELJAMAL O, MAAMOUN I, et al. Enhancing the characteristics and reactivity of nZVI: Polymers effect and mechanisms[J]. Journal of Molecular Liquids, 2020, 315: 113714. doi: 10.1016/j.molliq.2020.113714
|