[1] 刘维淦, 林琪, 张科, 等. 太湖流域长荡湖近百年生态环境演变过程[J]. 湖泊科学, 2022, 34(2): 675-683.
[2] 赵苇航, 朱彧, 朱亮, 等. 长荡湖水环境变化趋势及其主要影响因子[J]. 水资源保护, 2014, 30(6): 48-53.
[3] 王菲菲, 李小平, 陈小华, 等. 长荡湖近15年营养状态评价及限制因子研究[J]. 环境科学与技术, 2012, 35(S1): 353-357.
[4] 胡晓燕, 朱元荣, 孙福红, 等. 河流氮磷和水量输入对太湖富营养化的影响机理研究[J]. 环境科学研究, 2022, 35(6): 1407-1418.
[5] 高可伟, 朱元荣, 孙福红, 等. 我国典型湖泊及其入湖河流氮磷水质协同控制探讨[J]. 湖泊科学, 2021, 33(5): 1400-1414. doi: 10.18307/2021.0509
[6] 黄明雨. 环洱海主要入湖河流水质特征及入湖污染负荷估算[J]. 人民长江, 2022, 53(1): 61-66.
[7] 谢培, 高峰, 王书航, 等. 入湖河流对千岛湖水质影响研究—以CODMn为例[J]. 环境工程技术学报, 2019, 9(6): 692-700. doi: 10.12153/j.issn.1674-991X.2019.04.300
[8] 胡佳欣, 陈瑜, 袁伟皓. 太湖入湖河口表层沉积物细菌群落结构和功能演变规律研究[J]. 环境科学学报, 2023, 43(10): 371-381.
[9] YIN Y R, W H, JIANG Z H, et al. Degradation of triclosan in the water environment by microorganisms: A review[J]. Microorganisms, 2022, 10(9): 1713. doi: 10.3390/microorganisms10091713
[10] YE L, SHAO M F, ZHANG T, et al. Analysis of the bacterial community in a laboratory-scale nitrification reactor and a wastewater treatment plant by 454-pyrosequencing[J]. Water Research, 2011, 45: 4390-4398. doi: 10.1016/j.watres.2011.05.028
[11] LI S, XIAO X, YIN X, et al. Bacterial community along a historic lake sediment core of Ardley Island, west Antarctica[J]. Extremophiles, 2006, 10: 461-467. doi: 10.1007/s00792-006-0523-2
[12] LEE D H ZO Y G, KIM S J. Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism[J]. Applied and Environmental Microbiology, 1996, 62: 3112-3120. doi: 10.1128/aem.62.9.3112-3120.1996
[13] NILSSON R H, RYBERG M, ABARENKOV K, et al. The ITS region as a target for characterization of fungal communities using emerging sequencing technologies[J]. Fems Microbiology Letters, 2009, 296: 97-101. doi: 10.1111/j.1574-6968.2009.01618.x
[14] KIM S J, PARK S J, CHA I T, et al. Metabolic versatility of toluene-degrading, iron-reducing bacteria in tidal flat sediment, characterized by stable isotope probing-based metagenomic analysis[J]. Environmental Microbiology, 2014, 16: 189-204. doi: 10.1111/1462-2920.12277
[15] 张烨. 南太湖流域典型入湖河流水质与微生物菌群时空分布研究[D]. 浙江大学, 2020.
[16] 刘峰, 冯民权, 王毅博. 汾河入黄口夏季微生物群落结构分析[J]. 微生物学通报, 2019, 46(1): 54-64.
[17] SHANG Y Q, WU X Y, WANG X B, et al. Factors affecting seasonal variation of microbial community structure in Hulun Lake, China[J]. Science of the Total Environment, 2022, 805: 150294. doi: 10.1016/j.scitotenv.2021.150294
[18] 王礼权, 刘钰, 张毅敏, 等. 长荡湖、滆湖、竺山湾藻类功能群结构组成与环境因子的关系[J]. 水资源保护, 2023, 39(2): 224-232. doi: 10.3880/j.issn.1004-6933.2023.02.027
[19] 巫丹, 凌虹, 娄明月, 等. 长荡湖沉积物重金属污染特征及生态风险评价[J]. 环境污染与防治, 2023, 45(3): 370-375+399.
[20] 郭刘超, 韩庚宝, 邓俊辰, 等. 长荡湖浮游动物群落结构特征及影响因子分析[J]. 江苏水利, 2019(2): 1-5+10.
[21] 蔡永久, 刘劲松, 戴小琳, 等. 长荡湖大型底栖动物群落结构及水质生物学评价[J]. 生态学杂志, 2014, 33(5): 1224-1232.
[22] 刘荣坤, 徐锦前, 张颖, 等. 洪泽湖湖滨带丰水期水质空间分异特征及其影响因素[J]. 长江流域资源与环境, 2023, 32(1): 151-161.
[23] EMBONG D B, ALISA W, PATCHARAPORN K, et al. Spatial and seasonal variability of reef bacterial communities in the upper gulf of Thailand[J]. Frontiers in Marine Science, 2018, 5: 441. doi: 10.3389/fmars.2018.00441
[24] 高志伟, 刘凡惠, 贾美清, 等. 基于Illumina高通量测序的天津北大港湿地沉积物细菌群落特征和多样性分析[J]. 天津师范大学学报(自然科学版), 2021, 41(4): 45-52.
[25] 程豹, 望雪, 徐雅倩, 等. 澜沧江流域浮游细菌群落结构特征及驱动因子分析[J]. 环境科学, 2018, 39(8): 3649-3659.
[26] 王春香, 刘常敬, 郑林雪, 等. 厌氧氨氧化耦合脱氮系统中反硝化微生物研究[J]. 中国给水排水, 2015, 31(13): 19-22.
[27] 赵志瑞, 马斌, 张树军, 等. 高氨氮废水与城市生活污水短程硝化系统菌群比较[J]. 环境科学, 2013, 34(4): 1448-1456.
[28] 李明, 马飞, 陈晓娟, 等. 不同土地利用方式对宁夏盐渍化土壤细菌群落的影响[J]. 西北植物学报, 2021, 41(12): 2153-2162.
[29] 杨阳, 章妮, 蒋莉莉, 等. 青海湖高寒草地土壤理化性质及微生物群落特征对模拟降水的响应[J]. 草地学报, 2021, 29(5): 1043-1052.
[30] 王松鸽, 赖子尼, 麦永湛, 等. 珠江河网冬季浮游细菌群落结构及其影响因素[J]. 中国水产科学, 2019, 26(3): 522-533.
[31] 刘芹, 彭党聪. 城市污水生物脱氮系统中DNRA的检测与分析[J]. 中国给水排水, 2019, 35(19): 1-6.
[32] ELIU J W, EFU B B, EYANG H M, et al. Phylogenetic shifts of bacterioplankton community composition along Pearl Estuary: the potential impact of hypoxia and nutrients[J]. Frontiers in Microbiology, 2015, 6: 64.
[33] V M L, ROBERT L, RICKARD D, et al. Consequences of increased terrestrial dissolved organic matter and temperature on bacterioplankton community composition during a Baltic Sea mesocosm experiment[J]. Ambio, 2015, 44 Suppl 3(3S).
[34] XING W, LI J, LI P, et al. Effects of residual organics in municipal wastewater on hydrogenotrophic denitrifying microbial communities[J]. Journal of Environmental Sciences, 2018, 65(3): 262-270.
[35] ZHANG L, ZHAO F, LI X, et al. Contribution of influent rivers affected by different types of pollution to the changes of benthic microbial community structure in a large lake[J]. Ecotoxicology and Environmental Safety, 2020, 198(C): 110657.
[36] 张燕伟, 程方, 李奕辉, 等. 低碳氮比下MABR同步硝化反硝化过程的构建[J]. 工业水处理, 2020, 40(5): 70-76. doi: 10.11894/iwt.2019-0411
[37] 姚源, 竺建荣, 唐敏, 等. 好氧颗粒污泥技术处理乡镇污水应用[J]. 环境科学研究, 2018, 31(2): 379-388.
[38] J A H, M M G. An investigation into the effects of increasing salinity on photosynthesis in freshwater unicellular cyanobacteria during the late Archaean[J]. Geobiology, 2019, 17(4): 343-359. doi: 10.1111/gbi.12339
[39] 李亚莉, 杨正健, 许尤, 等. 清江上游利川段浮游细菌群落结构特征及其影响因素[J]. 生态学杂志, 2020, 39(11): 3756-3765.
[40] 邹沈娟, 尹立强, 赵博礼, 等. 梁子湖与后官湖浮游细菌的群落结构特征[J]. 水生态学杂志, 2021, 42(2): 33-41.
[41] 刘泽岸, 孙琳. 浐灞河生态区冬夏季节微生物群落结构特征研究[J]. 环境污染与防治, 2022, 44(9): 1202-1208.
[42] SONG Y H, MAO G N, GAO G H, et al. Structural and functional changes of groundwater bacterial community during temperature and pH disturbances[J]. Microbial ecology, 2019, 78(2): 428-445. doi: 10.1007/s00248-019-01333-7
[43] 张雅洁, 李珂, 朱浩然, 等. 北海湖微生物群落结构随季节变化特征[J]. 环境科学, 2017, 38(8): 3319-3329.
[44] 薛银刚, 刘菲, 孙萌, 等. 太湖竺山湾春季浮游细菌群落结构及影响因素[J]. 环境科学, 2018, 39(3): 1151-1158.
[45] 李先会, 朱建坤, 施练东, 等. 富营养化水体细菌去除氮磷能力研究[J]. 环境科学与技术, 2009, 32(4): 28-32. doi: 10.3969/j.issn.1003-6504.2009.04.007
[46] KASALICKY V, JEZBERA J, HAHN W M, et al. The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains[J]. PLoS ONE, 2017, 8(3): e58209.
[47] SHERIDAN A J, BICKFORD D. Shrinking body size as an ecological response to climate change[J]. Nature Climate Change, 2011, 1(8): 401-406. doi: 10.1038/nclimate1259
[48] 韩秋影, 张泽玉, 刘红霞, 等. 温度胁迫对日本鳗草(Zostera japonica)叶际可培养细菌的影响[J]. 生态学杂志, 2017, 36(9): 2564-2571.