[1] 丁洪, 余居华, 郑祥洲, 等. 中国城市污泥应用对作物产量、品质和土壤质量的影响[J]. 生态环境学报, 2021, 30(9): 1933-1942. DING H, YU J H, ZHENG X Z, et al. Review on effect of municipal sewage sludge application on yield and quality of crops and soil quality in China[J]. Ecology and Environmental Sciences, 2021, 30(9): 1933-1942 (in Chinese).
[2] 中华人民共和国住房和城乡建设部. 2022年城乡建设统计年鉴[EB/OL]. [2023-11-16].
[3] FANG L, WANG Q M, LI J S, et al. Feasibility of wet-extraction of phosphorus from incinerated sewage sludge ash (ISSA) for phosphate fertilizer production: A critical review[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(9): 939-971. doi: 10.1080/10643389.2020.1740545
[4] CHU X, NI Y, WANG X, et al. A win-win situation for environment and economy: Analysis of maximizing benefits in municipal sludge treatment plants[J]. Journal of Cleaner Production, 2023, 419: 138271. doi: 10.1016/j.jclepro.2023.138271
[5] 肖懿, 王理明, 李东阳, 等. 市政污泥热解特性及含碳官能团演化过程分析[J]. 环境工程学报, 2023, 17(5): 1589-1598. doi: 10.12030/j.cjee.202211170 XIAO Y, WANG L M, LI D Y, et al. Pyrolysis characteristics of municipal sludge and transformation of carbon-containing functional groups during pyrolysis process[J]. Chinese Journal of Environmental Engineering, 2023, 17(5): 1589-1598 (in Chinese). doi: 10.12030/j.cjee.202211170
[6] HU A B, ZHENG Y L, WANG Z, et al. Tracking the transformation pathway of dissolved organic matters (DOMs) in biochars under sludge pyrolysis via reactomics and molecular network analysis[J]. Chemosphere, 2023, 342: 140149. doi: 10.1016/j.chemosphere.2023.140149
[7] 张吉琛, 刘婷然, 董志强, 等. 污泥生物炭的催化机理及应用研究进展[J]. 环境化学, 2023, 42(6): 2018-2031. doi: 10.7524/j.issn.0254-6108.2022120203 ZHANG J C, LIU T R, DONG Z Q, et al. Mechanism and application for removal of contaminants by sludge-derived biochar catalyst: A review[J]. Environmental Chemistry, 2023, 42(6): 2018-2031 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022120203
[8] FANG L, YAN F, CHEN J J, et al. Novel recovered compound phosphate fertilizer produced from sewage sludge and its incinerated ash[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(17): 6611-6621.
[9] ZHANG W Q, HE Y H, XING X X, et al. In-depth insight into the effects of intrinsic calcium compounds on the pyrolysis of hazardous petrochemical sludge[J]. Journal of Hazardous Materials, 2023, 455: 131593. doi: 10.1016/j.jhazmat.2023.131593
[10] LI J, PAN L J, LI Z W, et al. Unveiling the migration of Cr and Cd to biochar from pyrolysis of manure and sludge using machine learning[J]. Science of the Total Environment, 2023, 885: 163895. doi: 10.1016/j.scitotenv.2023.163895
[11] FANG L, LI J S, DONATELLO S, et al. Recovery of phosphorus from incinerated sewage sludge ash by combined two-step extraction and selective precipitation[J]. Chemical Engineering Journal, 2018, 348: 74-83.
[12] 张洁, 张少逸, 梁学峰, 等. 污泥热解生物炭中重金属化学形态分布的影响因素研究进展[J]. 环境化学, 2022, 41(10): 3254-3266. doi: 10.7524/j.issn.0254-6108.2021070402 ZHANG J, ZHANG S Y, LIANG X F, et al. Research progress on influence factors on heavy metals chemical speciation distribution in sludge pyrolysis biochar[J]. Environmental Chemistry, 2022, 41(10): 3254-3266 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021070402
[13] FANG L, LI J S, DONATELLO S, et al. Use of Mg/Ca modified biochars to take up phosphorus from acid-extract of incinerated sewage sludge ash (ISSA) for fertilizer application[J]. Journal of Cleaner Production, 2020, 244: 118853. doi: 10.1016/j.jclepro.2019.118853
[14] MA C W, ZHANG F X, HU J H, et al. Co-pyrolysis of sewage sludge and waste tobacco stem: Gas products analysis, pyrolysis kinetics, artificial neural network modeling, and synergistic effects[J]. Bioresource Technology, 2023, 389: 129816. doi: 10.1016/j.biortech.2023.129816
[15] 卢欢亮, 叶向东, 汪永红, 等. 热解温度对污泥生物炭的表面特性及重金属安全性的影响[J]. 环境工程学报, 2015, 9(3): 1433-1439. doi: 10.12030/j.cjee.20150373 LU H L, YE X D, WANG Y H, et al. Effects of pyrolysis temperature on surface properties and heavy metal safety of sludge-derived biochar[J]. Chinese Journal of Environmental Engineering, 2015, 9(3): 1433-1439 (in Chinese). doi: 10.12030/j.cjee.20150373
[16] 赵佳琪, 黄亚继, 李志远, 等. 污泥和聚氯乙烯共热解三相产物特性[J]. 化工进展, 2023, 42(4): 2122-2129. ZHAO J Q, HUANG Y J, LI Z Y, et al. Characteristics of three-phase products from co-pyrolysis of sewage sludge and PVC[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2122-2129 (in Chinese).
[17] 王玉, 余广炜, 汪刚, 等. 污泥与不同添加剂共热解对重金属的影响[J]. 环境科学与技术, 2022, 45(3): 163-170. WANG Y, YU G W, WANG G, et al. Effects of co-pyrolysis of sludge and different additives on heavy metals in biochar[J]. Environmental Science & Technology, 2022, 45(3): 163-170 (in Chinese).
[18] 郭江山, 顾卫华, 白建峰, 等. 污泥与磷酸二氢钙共热解对残渣特性及Cr稳定性的影响[J]. 环境工程, 2022, 40(3): 45-50,88. GUO J S, GU W H, BAI J F, et al. Effect of co-pyrolysis of sewage sludge and ca(h2po4)2 on residue characteristic and chromium stability[J]. Environmental Engineering, 2022, 40(3): 45-50,88 (in Chinese).
[19] HUANG C, MOHAMED B A, LI L Y. Comparative life-cycle energy and environmental analysis of sewage sludge and biomass co-pyrolysis for biofuel and biochar production[J]. Chemical Engineering Journal , 2023, 457: 141284.
[20] MENG J T, WANG J, YANG F L, et al. Study on the multiple roles of CaO on nitrogen evolution mechanism of protein inside sewage sludge pyrolysis[J]. Chemical Engineering Journal, 2023, 458: 141039. doi: 10.1016/j.cej.2022.141039
[21] 李志远, 黄亚继, 赵佳琪, 等. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. LI Z Y, HUANG Y J, ZHAO J Q, et al. Characterization of heavy metals during co-pyrolysis of sludge with PVC[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956 (in Chinese).
[22] LING C C Y, LI S F Y. Synergistic interactions between sewage sludge, polypropylene, and high-density polyethylene during co-pyrolysis: An investigation based on iso-conversional model-free methods and master plot analysis[J]. Journal of Hazardous Materials, 2023, 455: 131600. doi: 10.1016/j.jhazmat.2023.131600
[23] 李娜, 张惠民, 孟记朋, 等. 污泥与不同生物质共热解制备生物炭及生物炭的土地应用[J]. 可再生能源, 2018, 36(10): 1423-1430. doi: 10.3969/j.issn.1671-5292.2018.10.001 LI N, ZHANG H M, MENG J P, et al. Preparation of biochar from sewage sludge with different biomass by co-pyrolysis and its land application[J]. Renewable Energy Resources, 2018, 36(10): 1423-1430 (in Chinese). doi: 10.3969/j.issn.1671-5292.2018.10.001
[24] 赵学强, 潘贤章, 马海艺, 等. 中国酸性土壤利用的科学问题与策略[J]. 土壤学报, 2023, 60(5): 1248-1263. ZHAO X Q, PAN X Z, MA H Y, et al. Scientific issues and strategies of acid soil use in China[J]. Acta Pedologica Sinica, 2023, 60(5): 1248-1263 (in Chinese).
[25] 葛锋, 张转霞, 扶恒, 等. 我国有机污染场地现状分析及展望[J]. 土壤, 2021, 53(6): 1132-1141. GE F, ZHANG Z X, FU H, et al. Distribution of organic contaminated sites in China: Statu quo and prospect[J]. Soils, 2021, 53(6): 1132-1141 (in Chinese).
[26] 苏加强, 汪淼, 曲自超, 等. 污泥/凹凸棒石共热解生物炭对土壤重金属的钝化效果研究[J]. 环境科学与管理, 2023, 48(9): 88-93. SU J Q, WANG M, QU Z C, et al. Stabilization efficiency of biochar prepared by co-pyrosis with sludge and attapulgite on heavy metals in soils[J]. Environmental Science and Management, 2023, 48(9): 88-93 (in Chinese).
[27] FANG L, LI J S, GUO M Z, et al. Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA)[J]. Chemosphere, 2018, 193: 278-287. doi: 10.1016/j.chemosphere.2017.11.023
[28] 王旭东, 任雪冰, 汤舒, 等. 污泥生物炭在土壤改良中的应用研究[J]. 中国农业科技导报, 2023, 25(6): 165-173. WANG X D, REN X B, TANG S, et al. Application of sludge biochar in soil improvement[J]. Journal of Agricultural Science and Technology, 2023, 25(6): 165-173 (in Chinese).
[29] 曹秀芹, 刘丰, 柴莲莲, 等. 污泥生物炭制备与其对土壤环境影响的研究进展[J]. 环境工程, 2022, 40(3): 203-211. CAO X Q, LIU F, CHAI L L, et al. Research progress on preparation of sludge based biochar and its effect on soil environment[J]. Environmental Engineering, 2022, 40(3): 203-211 (in Chinese).
[30] WANG X D, CHANG V W C, LI Z W, et al. Co-pyrolysis of sewage sludge and food waste digestate to synergistically improve biochar characteristics and heavy metals immobilization[J]. Waste Management, 2022, 141: 231-239. doi: 10.1016/j.wasman.2022.02.001
[31] YANG Y Q, CUI M H, REN Y G, et al. Towards understanding the mechanism of heavy metals immobilization in biochar derived from co-pyrolysis of sawdust and sewage sludge[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(4): 489-496. doi: 10.1007/s00128-020-02801-4
[32] WANG Z P, SHU X Q, ZHU H N, et al. Characteristics of biochars prepared by co-pyrolysis of sewage sludge and cotton stalk intended for use as soil amendments[J]. Environmental Technology, 2020, 41(11): 1347-1357. doi: 10.1080/09593330.2018.1534891
[33] TANG S Q, LIANG J M, XU X M, et al. Targeting phosphorus transformation to hydroxyapatite through sewage sludge pyrolysis boosted by quicklime toward phosphorus fertilizer alternative with toxic metals compromised[J]. Renewable and Sustainable Energy Reviews, 2023, 183: 113474. doi: 10.1016/j.rser.2023.113474
[34] HAN H D, HU S, LU C F, et al. Inhibitory effects of CaO/Fe2O3 on arsenic emission during sewage sludge pyrolysis[J]. Bioresource Technology, 2016, 218: 134-139. doi: 10.1016/j.biortech.2016.06.075
[35] 田天. 磷酸盐共热解污泥基生物炭的理化性质研究[D]. 北京: 中国地质大学(北京), 2021. TIAN T. Study on the Physicochemical Properties of Phosphate Copyrolyzed Sewage Sludge-based Biochar[D]. Beijing: China University of Geosciences, 2021 (in Chinese).
[36] HUANG H J, YANG T, LAI F Y, et al. Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar[J]. Journal of Analytical and Applied Pyrolysis, 2017, 125: 61-68. doi: 10.1016/j.jaap.2017.04.018
[37] LI W J, MENG J, ZHANG Y L, et al. Co-pyrolysis of sewage sludge and metal-free/metal-loaded polyvinyl chloride (PVC) microplastics improved biochar properties and reduced environmental risk of heavy metals[J]. Environmental Pollution, 2022, 302: 119092. doi: 10.1016/j.envpol.2022.119092
[38] JINDAROM C, MEEYOO V, RIRKSOMBOON T, et al. Thermochemical decomposition of sewage sludge in CO2 and N2 atmosphere[J]. Chemosphere, 2007, 67(8): 1477-1484. doi: 10.1016/j.chemosphere.2006.12.066
[39] 蔡旭, 黄群星, 王飞, 等. 污泥在CO2气氛下热解CO与CH4的生成特性[J]. 环境工程学报, 2016, 10(7): 3779-3786. CAI X, HUANG Q X, WANG F, et al. CO and CH4 emission characteristics during sewage sludge pyrolysis in CO2 atmosphere[J]. Chinese Journal of Environmental Engineering, 2016, 10(7): 3779-3786 (in Chinese).
[40] HUANG L M, LIU J Y, HE Y, et al. Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO2/O2 atmosphere as biomass to solid biofuel[J]. Bioresource Technology, 2016, 218: 631-642. doi: 10.1016/j.biortech.2016.06.133
[41] 徐智, 郭朝晖, 徐锐, 等. 控氧热解过程中污染稻草生物炭的组分特性及其重金属累积特征[J]. 环境科学, 2023, 44(2): 1051-1062. XU Z, GUO Z H, XU R, et al. Component properties and heavy metal accumulation characteristics of contaminated rice straw biochar during oxygen-controlled pyrolysis[J]. Environmental Science, 2023, 44(2): 1051-1062 (in Chinese).
[42] CHEN J C, ZHANG J H, LIU J Y, et al. Co-pyrolytic mechanisms, kinetics, emissions and products of biomass and sewage sludge in N2, CO2 and mixed atmospheres[J]. Chemical Engineering Journal, 2020, 397: 125372. doi: 10.1016/j.cej.2020.125372
[43] 张琳, 姚锡文, 刘清华, 等. 热解温度和气氛对松木屑热解气化特性的影响研究[J]. 能源与节能, 2022(5): 24-26,49. ZHANG L, YAO X W, LIU Q H, et al. Effects of pyrolysis temperature and atmosphere on pyrolysis and gasification characteristics of pine sawdust[J]. Energy and Energy Conservation, 2022(5): 24-26,49 (in Chinese).
[44] ZIELIŃSKA A, OLESZCZUK P. Attenuation of phenanthrene and pyrene adsorption by sewage sludge-derived biochar in biochar-amended soils[J]. Environmental Science and Pollution Research International, 2016, 23(21): 21822-21832. doi: 10.1007/s11356-016-7382-x
[45] KOŃCZAK M, GAO Y Z, OLESZCZUK P. Carbon dioxide as a carrier gas and biomass addition decrease the total and bioavailable polycyclic aromatic hydrocarbons in biochar produced from sewage sludge[J]. Chemosphere, 2019, 228: 26-34. doi: 10.1016/j.chemosphere.2019.04.029
[46] ZHU X F, ZHAO L, FU F Y, et al. Pyrolysis of pre-dried dewatered sewage sludge under different heating rates: Characteristics and kinetics study[J]. Fuel, 2019, 255: 115591. doi: 10.1016/j.fuel.2019.05.174
[47] WANG X H, JIA J C. Effect of heating rate on the municipal sewage sludge pyrolysis character[J]. Energy Procedia, 2012, 14: 1648-1652. doi: 10.1016/j.egypro.2011.12.1146
[48] WANG Z P, XIE L K, LIU K, et al. Co-pyrolysis of sewage sludge and cotton stalks[J]. Waste Management, 2019, 89: 430-438. doi: 10.1016/j.wasman.2019.04.033
[49] QIAN T T, JIANG H. Migration of phosphorus in sewage sludge during different thermal treatment processes[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(6): 1411-1419.
[50] WESTERHOFF P, LEE S, YANG Y, et al. Characterization, recovery opportunities, and valuation of metals in municipal sludges from U. S. wastewater treatment plants nationwide[J]. Environmental Science & Technology, 2015, 49(16): 9479-9488.
[51] 钱婷婷. 磷在固体废物热处理过程中的迁移转化及再利用[D]. 合肥: 中国科学技术大学, 2014. QIAN T T. Transformation Behavior of Phosphorus during the Thermal Treatment of Solid Wastes and Its Utilization[D]. Hefei: University of Science and Technology of China, 2014 (in Chinese).
[52] SUN D Q, HALE L, KAR G, et al. Phosphorus recovery and reuse by pyrolysis: Applications for agriculture and environment[J]. Chemosphere, 2018, 194: 682-691. doi: 10.1016/j.chemosphere.2017.12.035
[53] HUANG R X, TANG Y Z. Speciation dynamics of phosphorus during (hydro)thermal treatments of sewage sludge[J]. Environmental Science & Technology, 2015, 49(24): 14466-14474.
[54] CHEN J J, TANG S Q, YAN F, et al. Efficient recovery of phosphorus in sewage sludge through hydroxylapatite enhancement formation aided by calcium-based additives[J]. Water Research, 2020, 171: 115450. doi: 10.1016/j.watres.2019.115450
[55] CHEN J J, AIHEMAITI A, XIA Y, et al. The effect of soil amendment derived from P-enhanced sludge pyrochar on ryegrass growth and soil microbial diversity[J]. Science of the Total Environment, 2022, 813: 152526. doi: 10.1016/j.scitotenv.2021.152526
[56] LI J S, LI Y L, LIU F F, et al. Pyrolysis of sewage sludge to biochar: Transformation mechanism of phosphorus[J]. Journal of Analytical and Applied Pyrolysis, 2023, 173: 106065. doi: 10.1016/j.jaap.2023.106065
[57] FANG Z Q, ZHUANG X Z, ZHANG X H, et al. Influence of paraments on the transformation behaviors and directional adjustment strategies of phosphorus forms during different thermochemical treatments of sludge[J]. Fuel, 2023, 333: 126544. doi: 10.1016/j.fuel.2022.126544
[58] 孟详东, 黄群星, 严建华, 等. 磷在污泥热解过程中的迁移转化[J]. 化工学报, 2018, 69(7): 3208-3215. MENG X D, HUANG Q X, YAN J H, et al. Migration and transformation of phosphorus during pyrolysis process of sewage sludge[J]. CIESC Journal, 2018, 69(7): 3208-3215 (in Chinese).
[59] 施川, 张盼月, 郭建斌, 等. 污泥生物炭的磷吸附特性[J]. 环境工程学报, 2016, 10(12): 7202-7208. SHI C, ZHANG P Y, GUO J B, et al. Phosphorus adsorption performance onto sewage sludge biochar[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 7202-7208 (in Chinese).
[60] LI D N, SHAN R, JIANG L X, et al. A review on the migration and transformation of heavy metals in the process of sludge pyrolysis[J]. Resources, Conservation and Recycling, 2022, 185: 106452. doi: 10.1016/j.resconrec.2022.106452
[61] 刘菲菲, 李京书, 李彦龙, 等. 污泥微波热解过程中磷和重金属共富集特性研究[C]//中国环境科学学会2022年科学技术年会--环境工程技术创新与应用分会场论文集(四). 沈阳航空航天大学, 2022: 6. LIU F F, LI J S, LI Y L, et al. Study on the co-enrichment characteristics of phosphorus and heavy metals in the process of sludge microwave pyrolysis [C]//2022 Annual Meeting of Science and Technology of Chinese Society of Environmental Sciences-Environmental Engineering Technology Innovation and Application Branch (4). Shenyang Aerospace University, 2022: 6(in Chinese).
[62] XU G R, ZOU J L, LI G B. Stabilization/solidification of heavy metals in sludge ceramsite and leachability affected by oxide substances[J]. Environmental Science & Technology, 2009, 43(15): 5902-5907.
[63] 张进, 刁韩杰, 王敏艳, 等. 稻壳与污泥共热解对污泥炭特性及其重金属生态风险的影响[J]. 环境科学学报, 2019, 39(4): 1250-1256. ZHANG J, DIAO H J, WANG M Y, et al. Effects of rice husk and sewage sludge co-pyrolysis on characteristics of the sludge biochar and its ecological risk of heavy metals[J]. Acta Scientiae Circumstantiae, 2019, 39(4): 1250-1256 (in Chinese).
[64] 汪刚, 余广炜, 谢胜禹, 等. 添加不同塑料与污泥混合热解对生物炭中重金属的影响[J]. 燃料化学学报, 2019, 47(5): 611-620. WANG G, YU G W, XIE S Y, et al. Effect of co-pyrolysis of different plastics with sewage sludge on heavy metals in the biochar[J]. Journal of Fuel Chemistry and Technology, 2019, 47(5): 611-620 (in Chinese).
[65] LONGENDYKE G K, KATEL S, WANG Y X. PFAS fate and destruction mechanisms during thermal treatment: A comprehensive review[J]. Environmental Science. Processes & Impacts, 2022, 24(2): 196-208.
[66] MOŠKO J, POHOŘELÝ M, CAJTHAML T, et al. Effect of pyrolysis temperature on removal of organic pollutants present in anaerobically stabilized sewage sludge[J]. Chemosphere, 2021, 265: 129082. doi: 10.1016/j.chemosphere.2020.129082
[67] ALIPOUR M, ASADI H, CHEN C R, et al. Fate of organic pollutants in sewage sludge during thermal treatments: Elimination of PCBs, PAHs, and PPCPs[J]. Fuel, 2022, 319: 123864. doi: 10.1016/j.fuel.2022.123864
[68] BROWN R A, KERCHER A K, NGUYEN T H, et al. Production and characterization of synthetic wood chars for use as surrogates for natural sorbents[J]. Organic Geochemistry, 2005, 37(3): 321-333.
[69] BUSS W. Pyrolysis solves the issue of organic contaminants in sewage sludge while retaining carbon—Making the case for sewage sludge treatment via pyrolysis[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(30): 10048-10053.
[70] JONES S, BARDOS R P, KIDD P S, et al. Biochar and compost amendments enhance copper immobilisation and support plant growth in contaminated soils[J]. Journal of Environmental Management, 2016, 171: 101-112.
[71] SHEIKH L, YOUNIS U, SHAHZAD A S, et al. Evaluating the effects of cadmium under saline conditions on leafy vegetables by using acidified biochar[J]. Pakistan Journal of Botany, 2023, 55: 33-39.
[72] DENG Y, HUANG Q, GU W H, et al. Application of sludge-based biochar generated by pyrolysis: A mini review[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020: 1-10.
[73] 卢再亮, 李九玉, 姜军, 等. 生活污水污泥制备的生物质炭对红壤酸度的改良效果及其环境风险[J]. 环境科学, 2012, 33(10): 3585-3591. LU Z L, LI J Y, JIANG J, et al. Amelioration effects of wastewater sludge biochars on red soil acidity and their environmental risk[J]. Environmental Science, 2012, 33(10): 3585-3591 (in Chinese).
[74] 张丛光, 尚高原, 邱凌, 等. 污泥—生物炭耦合还田技术研究进展[J]. 西北林学院学报, 2017, 32(3): 84-90. ZHANG C G, SHANG G Y, QIU L, et al. Research progress of the application technology of sludge and biochar[J]. Journal of Northwest Forestry University, 2017, 32(3): 84-90 (in Chinese).
[75] 王秋利, 韩勇. 污泥基生物炭在矿区土壤重金属污染治理中的应用[J]. 能源与环保, 2023, 45(5): 43-48. WANG Q L, HAN Y. Application of sludge-based biochar on treatment of heavy metal pollution in mining area soil[J]. China Energy and Environmental Protection, 2023, 45(5): 43-48 (in Chinese).
[76] 周佳丽, 林伟雄, 关智杰, 等. 响应曲面法优化KOH改性污泥生物炭的制备及其强化去除Pb(Ⅱ)的研究[J]. 环境科学学报, 2022, 42(8): 194-207. ZHOU J L, LIN W X, GUAN Z J, et al. Optimization of preparation of KOH-modified sludge biochar by response surface method and its enhanced Pb(Ⅱ)removal[J]. Acta Scientiae Circumstantiae, 2022, 42(8): 194-207 (in Chinese).
[77] KRAHN K M, CORNELISSEN G, CASTRO G, et al. Sewage sludge biochars as effective PFAS-sorbents[J]. Journal of Hazardous Materials, 2023, 445: 130449. doi: 10.1016/j.jhazmat.2022.130449
[78] FABREGAT-PALAU J, VIDAL M, RIGOL A. Modelling the sorption behaviour of perfluoroalkyl carboxylates and perfluoroalkane sulfonates in soils[J]. Science of the Total Environment, 2021, 801: 149343. doi: 10.1016/j.scitotenv.2021.149343
[79] GAGLIANO E, SGROI M, FALCIGLIA P P, et al. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration[J]. Water Research, 2020, 171: 115381. doi: 10.1016/j.watres.2019.115381
[80] DENG S B, YU Q, HUANG J, et al. Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: Effects of resin properties and solution chemistry[J]. Water Research, 2010, 44(18): 5188-5195. doi: 10.1016/j.watres.2010.06.038
[81] WANG H Z, GUO W Q, LIU B H, et al. Sludge-derived biochar as efficient persulfate activators: Sulfurization-induced electronic structure modulation and disparate nonradical mechanisms[J]. Applied Catalysis B:Environmental, 2020, 279: 119361. doi: 10.1016/j.apcatb.2020.119361
[82] 李韬略, 袁雪红, 陈传胜, 等. Fe2+耦合热活化过硫酸盐降解土壤中四溴双酚A[J]. 环境化学, 2023, 42(8): 2730-2739. doi: 10.7524/j.issn.0254-6108.2022031501 LI T L, YUAN X H, CHEN C S, et al. Degradation of tetrabromobisphenol A by ferrous coupling thermally activated persulfate in soil[J]. Environmental Chemistry, 2023, 42(8): 2730-2739 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022031501
[83] PREMARATHNA K S D, RAJAPAKSHA A U, SARKAR B, et al. Biochar-based engineered composites for sorptive decontamination of water: A review[J]. Chemical Engineering Journal, 2019, 372: 536-550. doi: 10.1016/j.cej.2019.04.097
[84] KANG X D, ZHANG Q Y, LIU X F, et al. The interface mechanism of sludge biochar activating persulfate to remove tetracycline: The role of the C-O-Fe bridge at the carbon surface[J]. Journal of Cleaner Production, 2023, 384: 135514. doi: 10.1016/j.jclepro.2022.135514
[85] 韩剑宏, 李艳伟, 姚卫华, 等. 玉米秸秆和污泥共热解制备的生物质炭及其对盐碱土壤理化性质的影响[J]. 水土保持通报, 2017, 37(4): 92-98,105. HAN J H, LI Y W, YAO W H, et al. Co-pyrolysis preparing biochar with corn straw and sewage sludge and its effects on saline soil improvement[J]. Bulletin of Soil and Water Conservation, 2017, 37(4): 92-98,105 (in Chinese).
[86] TANG J Y, ZHANG L H, ZHANG J C, et al. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost[J]. Science of the Total Environment, 2020, 701: 134751. doi: 10.1016/j.scitotenv.2019.134751
[87] FERNÁNDEZ-LUQUEÑO F, VALENZUELA-ENCINAS C, MARSCH R, et al. Microbial communities to mitigate contamination of PAHs in soil: Possibilities and challenges: A review[J]. Environmental Science and Pollution Research International, 2011, 18(1): 12-30. doi: 10.1007/s11356-010-0371-6
[88] BARAN S, BIELIŃSKA J E, OLESZCZUK P. Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons[J]. Geoderma, 2004, 118(3/4): 221-232.
[89] 张晶, 张惠文, 丛峰, 等. 长期灌溉含多环芳烃污水对稻田土壤酶活性与微生物种群数量的影响[J]. 生态学杂志, 2007, 26(8): 1193-1198. ZHANG J, ZHANG H W, CONG F, et al. Effects of long-term PAHs-containing wastewater irrigation on lowland rice soil enzyme activities and microbial populations[J]. Chinese Journal of Ecology, 2007, 26(8): 1193-1198 (in Chinese).
[90] ALLISON S D. Soil minerals and humic acids alter enzyme stability: Implications for ecosystem processes[J]. Biogeochemistry, 2006, 81(3): 361-373. doi: 10.1007/s10533-006-9046-2
[91] TAVOLARO P, TAVOLARO A, MARTINO G. Influence of zeolite PZC and pH on the immobilization of cytochrome c: A preliminary study regarding the preparation of new biomaterials[J]. Colloids and Surfaces. B, Biointerfaces, 2009, 70(1): 98-107. doi: 10.1016/j.colsurfb.2008.12.019
[92] YUAN Z H, HUANG Q J, WANG Z Q, et al. Medium-low temperature conditions induce the formation of environmentally persistent free radicals in microplastics with conjugated aromatic-ring structures during sewage sludge pyrolysis[J]. Environmental Science & Technology, 2022, 56(22): 16209-16220.
[93] LIU Y, DAI Q Y, JIN X Q, et al. Negative impacts of biochars on urease activity: High pH, heavy metals, polycyclic aromatic hydrocarbons, or free radicals?[J]. Environmental Science & Technology, 2018, 52(21): 12740-12747.
[94] PARIYAR P, KUMARI K, JAIN M K, et al. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application[J]. Science of the Total Environment, 2020, 713: 136433. doi: 10.1016/j.scitotenv.2019.136433
[95] CHEN J F, DING L S, WANG P Y, et al. The estimation of the higher heating value of biochar by data-driven modeling[J]. Journal of Renewable Materials, 2022, 10(6): 1555-1574. doi: 10.32604/jrm.2022.018625
[96] GUSIATIN Z M, KURKOWSKI R, BRYM S, et al. Properties of biochars from conventional and alternative feedstocks and their suitability for metal immobilization in industrial soil[J]. Environmental Science and Pollution Research International, 2016, 23(21): 21249-21261. doi: 10.1007/s11356-016-7335-4
[97] HU Y H, THOMSEN T P, FENTON O, et al. Effects of dairy processing sludge and derived biochar on greenhouse gas emissions from Danish and Irish soils[J]. Environmental Research, 2023, 216(Pt 2): 114543.
[98] XU X Y, KAN Y, ZHAO L, et al. Chemical transformation of CO2 during its capture by waste biomass derived biochars[J]. Environmental Pollution, 2016, 213: 533-540. doi: 10.1016/j.envpol.2016.03.013
[99] ZHAO L, SUN Z F, PAN X W, et al. Sewage sludge derived biochar for environmental improvement: Advances, challenges, and solutions[J]. Water Research X, 2023, 18: 100167. doi: 10.1016/j.wroa.2023.100167
[100] SCHWANDER T, SCHADA von BORZYSKOWSKI L, BURGENER S, et al. A synthetic pathway for the fixation of carbon dioxide in vitro[J]. Science, 2016, 354(6314): 900-904. doi: 10.1126/science.aah5237
[101] GONG F Y, LI Y. Fixing carbon, unnaturally[J]. Science, 2016, 354(6314): 830-831. doi: 10.1126/science.aal1559
[102] 程功, 刘廷玺, 李东方, 等. 生物炭和秸秆还田对干旱区玉米农田土壤温室气体通量的影响[J]. 中国生态农业学报(中英文), 2019, 27(7): 1004-1014. CHENG G, LIU T X, LI D F, et al. Effects of biochar and straw on greenhouse gas fluxes of corn fields in arid regions[J]. Chinese Journal of Eco-Agriculture, 2019, 27(7): 1004-1014 (in Chinese).
[103] KAZEMI SHARIAT PANAHI H, DEHHAGHI M, OK Y S, et al. A comprehensive review of engineered biochar: Production, characteristics, and environmental applications[J]. Journal of Cleaner Production, 2020, 270: 122462. doi: 10.1016/j.jclepro.2020.122462
[104] KUZYAKOV Y, BOGOMOLOVA I, GLASER B. Biochar stability in soil: Decomposition during eight years and transformation as assessed by compound-specific 14C analysis[J]. Soil Biology and Biochemistry, 2014, 70: 229-236. doi: 10.1016/j.soilbio.2013.12.021