[1] ZHANG X, DAVIDSON E A, MAUZERALL D L, et al. Managing nitrogen for sustainable development[J]. Nature, 2015, 528(7580): 51-59. doi: 10.1038/nature15743
[2] CUI Z L, ZHANG H Y, CHEN X P, et al. Pursuing sustainable productivity with millions of smallholder farmers[J]. Nature, 2018, 555(7696): 363-366. doi: 10.1038/nature25785
[3] COSKUN D, BRITTO D T, SHI W M, et al. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition[J]. Nature Plants, 2017, 3: 17074. doi: 10.1038/nplants.2017.74
[4] XIN J, LIU Y, CHEN F, et al. The missing nitrogen pieces: A critical review on the distribution, transformation, and budget of nitrogen in the vadose zone-groundwater system[J]. Water Research, 2019, 165: 114977. doi: 10.1016/j.watres.2019.114977
[5] 曹瑞霞, 刘京, 邓开开, 等. 三峡库区典型紫色土小流域径流及氮磷流失特征[J]. 环境科学, 2019, 40(12): 5330-5339. CAO R X, LIU J, DENG K K, et al. Characteristics of nitrogen and phosphorus losses and runoff in a typical purple soil watershed in the Three Gorges Reservoir area[J]. Environmental Science, 2019, 40(12): 5330-5339 (in Chinese).
[6] 于佳正. 丛枝菌根真菌(Arbuscular mycorrhizal fungi)在不同氮水平稻田中的侵染及其对氮流失影响的试验研究[D]. 南京: 东南大学, 2018: 47-48. YU J Z. Experimental study on the infection of Arbuscular mycorrhizal fungi in rice fields with different nitrogen levels and its influence on nitrogen loss[D]. Nanjing: Southeast University, 2018: 47-48 (in Chinese) .
[7] SONG X W, GAO Y, GREEN S M, et al. Nitrogen loss from Karst area in China in recent 50years: Anin-situ simulated rainfall experiment’s assessment[J]. Ecology and Evolution, 2017, 7(23): 10131-10142. doi: 10.1002/ece3.3502
[8] 陈裴裴, 吴家森, 郑小龙, 等. 不同施肥对雷竹林渗漏水中可溶性有机碳、氮流失的影响[J]. 植物营养与肥料学报, 2014, 20(5): 1303-1310. CHEN P P, WU J S, ZHENG X L, et al. Effects of different fertilization treatments on loss of dissolved organic carbon and nitrogen in seepage water under phyllostachy pracox stand[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(5): 1303-1310 (in Chinese).
[9] JIA Y M, HU Z Y, BA Y X, et al. Application of biochar-coated urea controlled loss of fertilizer nitrogen and increased nitrogen use efficiency[J]. Chemical and Biological Technologies in Agriculture, 2021, 8: 1-11. doi: 10.1186/s40538-020-00199-z
[10] 张雷, 张峥, 柴宁, 等. 稻田种植对地表径流污染状况调查研究[J]. 中国环境监测, 2022, 38(2): 123-128. ZHANG L, ZHANG Z, CHAI N, et al. Investigation on surface runoff pollution caused by rice planting[J]. Environmental Monitoring in China, 2022, 38(2): 123-128 (in Chinese).
[11] 成杰民, 宋涛, 李彦. 基于GIS的南四湖沿岸农业面源氮磷负荷估算研究[J]. 水土保持研究, 2012, 19(3): 284-288. CHENG J M, SONG T, LI Y. Estimation of nitrogen and phosphorus loading of agricultural non-point sources along nansi lake based on GIS[J]. Research of Soil and Water Conservation, 2012, 19(3): 284-288 (in Chinese).
[12] 喻朝庆. 水-氮耦合机制下的中国粮食与环境安全[J]. 中国科学:地球科学, 2019, 49(12): 2018-2036. doi: 10.1360/SSTe-2019-0041 YU (C /Z)Q. Food and environmental security in China under water-nitrogen coupling mechanism[J]. Scientia Sinica (Terrae), 2019, 49(12): 2018-2036 (in Chinese). doi: 10.1360/SSTe-2019-0041
[13] 孙铖, 周华真, 陈磊, 等. 农田化肥氮磷地表径流污染风险评估[J]. 农业环境科学学报, 2017, 36(7): 1266-1273. SUN C, ZHOU H Z, CHEN L, et al. The pollution risk assessment of nitrogen and phosphorus loss in surface runoff from farmland fertilizer[J]. Journal of Agro-Environment Science, 2017, 36(7): 1266-1273 (in Chinese).
[14] 黄洁钰, 南哲, 商学棽, 等. 东北三省种植业氮流失风险评价[J]. 生态与农村环境学报, 2022, 38(5): 660-669. HUANG J Y, NAN Z, SHANG X C, et al. Risk assessment on nitrogen loss from crop farming in the three northeastern provinces of China[J]. Journal of Ecology and Rural Environment, 2022, 38(5): 660-669 (in Chinese).
[15] 杜康. 栽培措施对秸秆还田条件下水稻幼苗生长的影响[D]. 南京: 南京农业大学, 2015: 2-4. DU K. Effect of cultivation measures on rice seedling growth under the condition of straw returning to field[D]. Nanjing: Nanjing Agricultural University, 2015: 2-4. (in Chinese)
[16] GU Z, QI Z M, BURGHATE R, et al. Irrigation scheduling approaches and applications: A review[J]. Journal of Irrigation and Drainage Engineering, 2020, 146(6): 1464.
[17] ZHOU Y Z, ZHANG Y Y, TIAN D, et al. The influence of straw returning on N2O emissions from a maize-wheat field in the North China Plain[J]. Science of the Total Environment, 2017, 584/585: 935-941. doi: 10.1016/j.scitotenv.2017.01.141
[18] XU S S, HOU P F, XUE L H, et al. Treated domestic sewage irrigation significantly decreased the CH4, N2O and NH3 emissions from paddy fields with straw incorporation[J]. Atmospheric Environment, 2017, 169: 1-10. doi: 10.1016/j.atmosenv.2017.09.009
[19] 刘丽君, 朱启林, 何秋香, 等. 添加秸秆和生物炭土壤N2O排放对温度的响应[J]. 生态学杂志, 2022, 41(8): 1501-1508. LIU L J, ZHU Q L, HE Q X, et al. Responses of soil N2O emission to temperature under straw and biochar addition[J]. Chinese Journal of Ecology, 2022, 41(8): 1501-1508 (in Chinese).
[20] 杨海洋, 袁远, 王江彦, 等. 降雨强度和秸秆还田对淮河流域褐土非点源氮输出影响研究[J]. 灌溉排水学报, 2022, 41(3): 75-82. YANG H Y, YUAN Y, WANG J Y, et al. The efficacy of amending soil with straw to reduce nitrogen loss from watersheds under different rainfalls in Huaihe River Basin[J]. Journal of Irrigation and Drainage, 2022, 41(3): 75-82 (in Chinese).
[21] LIU Y, LI J A, JIAO X Y, et al. Effects of straw returning combine with biochar on water quality under flooded condition[J]. Water, 2020, 12(6): 1633. doi: 10.3390/w12061633
[22] YADAV V, KARAK T, SINGH S, et al. Benefits of biochar over other organic amendments: Responses for plant productivity ( Pelargonium graveolens L. ) and nitrogen and phosphorus losses[J]. Industrial Crops and Products, 2019, 131: 96-105. doi: 10.1016/j.indcrop.2019.01.045
[23] WEI X C, LIU D F, LI W J, et al. Biochar addition for accelerating bioleaching of heavy metals from swine manure and reserving the nutrients[J]. Science of the Total Environment, 2018, 631/632: 1553-1559. doi: 10.1016/j.scitotenv.2018.03.140
[24] PAN S Y, DONG C D, SU J F, et al. The role of biochar in regulating the carbon, phosphorus, and nitrogen cycles exemplified by soil systems[J]. Sustainability, 2021, 13(10): 5612. doi: 10.3390/su13105612
[25] LI J S, SHAO X Q, HUANG D, et al. Short-term biochar effect on soil physicochemical and microbiological properties of a degraded alpine grassland[J]. Pedosphere, 2022, 32(3): 426-437. doi: 10.1016/S1002-0160(21)60084-X
[26] RIZHIYA E Y, MUKHINA I M, BALASHOV E V, et al. Effect of biochar on N2O emission, crop yield and properties of Stagnic Luvisol in a field experiment[J]. Zemdirbyste-Agriculture, 2019, 106(4): 297-306. doi: 10.13080/z-a.2019.106.038
[27] DING Y, LIU Y G, LIU S B, et al. Biochar to improve soil fertility. A review[J]. Agronomy for Sustainable Development, 2016, 36(2): 36. doi: 10.1007/s13593-016-0372-z
[28] 王洪媛, 盖霞普, 翟丽梅, 等. 生物炭对土壤氮循环的影响研究进展[J]. 生态学报, 2016, 36(19): 5998-6011. WANG H Y, GAI X P, ZHAI L M, et al. Effect of biochar on soil nitrogen cycling: A review[J]. Acta Ecologica Sinica, 2016, 36(19): 5998-6011 (in Chinese).
[29] THOMPSON R B, MARTÍNEZ-GAITAN C, GALLARDO M, et al. Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey[J]. Agricultural Water Management, 2007, 89(3): 261-274. doi: 10.1016/j.agwat.2007.01.013
[30] 胡锦昇, 樊军, 付威, 等. 保护性耕作措施对旱地春玉米土壤水分和硝态氮淋溶累积的影响[J]. 应用生态学报, 2019, 30(4): 1188-1198. HU J S, FAN J, FU W, et al. Effects of conservation tillage measures on soil water and NO3-N leaching in dryland maize cropland[J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1188-1198 (in Chinese).
[31] 陈灿, 潘亚男, 王欣, 等. 凤眼莲生物炭对稻田土壤肥力的影响[J]. 环境化学, 2017, 36(4): 907-914. doi: 10.7524/j.issn.0254-6108.2017.04.2016071201 CHEN C, PAN Y N, WANG X, et al. Influence of water hyacinth biochar on retention of nutrition in paddy soils[J]. Environmental Chemistry, 2017, 36(4): 907-914 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017.04.2016071201
[32] 刘伯顺, 黄立华, 黄金鑫, 等. 我国农田氨挥发研究进展与减排对策[J]. 中国生态农业学报(中英文), 2022, 30(6): 875-888. doi: 10.12357/cjea.20210820 LIU B S, HUANG L H, HUANG J X, et al. Research progress and emission reduction countermeasures of ammonia volatilization in farmland in China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 875-888 (in Chinese). doi: 10.12357/cjea.20210820
[33] 张星, 张晴雯, 刘杏认, 等. 施用生物炭对农田土壤氮素转化关键过程的影响[J]. 中国农业气象, 2015, 36(6): 709-716. doi: 10.3969/j.issn.1000-6362.2015.06.007 ZHANG X, ZHANG Q W, LIU X R, et al. Effects of biochar on the key soil nitrogen transformation processes in agricultural soil[J]. Chinese Journal of Agrometeorology, 2015, 36(6): 709-716 (in Chinese). doi: 10.3969/j.issn.1000-6362.2015.06.007
[34] 刘玮晶, 刘烨, 高晓荔, 等. 外源生物质炭对土壤中铵态氮素滞留效应的影响[J]. 农业环境科学学报, 2012, 31(5): 962-968. LIU W J, LIU Y, GAO X L, et al. Effects of biomass charcoals on retention of ammonium nitrogen in soils[J]. Journal of Agro-Environment Science, 2012, 31(5): 962-968 (in Chinese).
[35] MANDAL S, THANGARAJAN R, BOLAN N S, et al. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat[J]. Chemosphere, 2016, 142: 120-127. doi: 10.1016/j.chemosphere.2015.04.086
[36] 卢丽丽, 吴根义. 农田氨排放影响因素研究进展[J]. 中国农业大学学报, 2019, 24(1): 149-162. LU L L, WU G Y. Advances in affecting factors of ammonia emission in farmland[J]. Journal of China Agricultural University, 2019, 24(1): 149-162 (in Chinese).
[37] MANDAL S, DONNER E, VASILEIADIS S, et al. The effect of biochar feedstock, pyrolysis temperature, and application rate on the reduction of ammonia volatilisation from biochar-amended soil[J]. Science of the Total Environment, 2018, 627: 942-950. doi: 10.1016/j.scitotenv.2018.01.312
[38] CHU L, DARSHIKA HENNAYAKE H M K, SUN H J. Biochar effectively reduces ammonia volatilization from nitrogen-applied soils in tea and bamboo plantations[J]. Phyton, 2019, 88(3): 261-267. doi: 10.32604/phyton.2019.07791
[39] 白金泽, 刘镇远, 宋佳杰, 等. 秸秆还田配施生物炭对关中平原夏玉米产量和土壤 N2O排放的影响[J]. 环境科学, 2022, 43(8): 4379-4386. BAI J Z, LIU Z Y, SONG J J, et al. Effects of straw returning with biochar application on summer maize yield and soil N2O emission in Guanzhong Plain[J]. Environmental Science, 2022, 43(8): 4379-4386 (in Chinese).
[40] YADAV V, JAIN S, MISHRA P, et al. Amelioration in nutrient mineralization and microbial activities of sandy loam soil by short term field aged biochar[J]. Applied Soil Ecology, 2019, 138: 144-155. doi: 10.1016/j.apsoil.2019.01.012
[41] 陈梅, 王芳, 张德俐, 等. 生物炭结构性质对氨氮的吸附特性影响[J]. 环境科学, 2019, 40(12): 5421-5429. CHEN M, WANG F, ZHANG D L, et al. Effect of biochar structure on adsorption characteristics of ammonia nitrogen[J]. Environmental Science, 2019, 40(12): 5421-5429 (in Chinese).
[42] ESFANDBOD M, PHILLIPS I R, MILLER B, et al. Aged acidic biochar increases nitrogen retention and decreases ammonia volatilization in alkaline bauxite residue sand[J]. Ecological Engineering, 2017, 98: 157-165. doi: 10.1016/j.ecoleng.2016.10.077
[43] KIZITO S, WU S B, KIPKEMOI KIRUI W, et al. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry[J]. Science of the Total Environment, 2015, 505: 102-112. doi: 10.1016/j.scitotenv.2014.09.096
[44] NGUYEN B T, LEHMANN J. Black carbon decomposition under varying water regimes[J]. Organic Geochemistry, 2009, 40(8): 846-853. doi: 10.1016/j.orggeochem.2009.05.004
[45] HOLLISTER C C, BISOGNI J J, LEHMANN J. Ammonium, nitrate, and phosphate sorption to and solute leaching from biochars prepared from corn stover ( Zea mays L. ) and oak wood ( Quercus spp. )[J]. Journal of Environmental Quality, 2013, 42(1): 137-144. doi: 10.2134/jeq2012.0033
[46] 王荣荣, 赖欣, 李洁, 等. 花生壳生物炭对硝态氮的吸附机制研究[J]. 农业环境科学学报, 2016, 35(9): 1727-1734. WANG R R, LAI X, LI J, et al. Adsorption of nitrate nitrogen by peanut shell biochar[J]. Journal of Agro-Environment Science, 2016, 35(9): 1727-1734 (in Chinese).
[47] 宋新山, 宋锦, 曹新, 等. 改性稻秆阴离子吸附剂的制备及对硝酸根吸附研究[J]. 安全与环境学报, 2019, 19(2): 658-665. SONG X S, SONG J, CAO X, et al. Preparation for modified rice straw anionic adsorbent and its adsorption on nitrate[J]. Journal of Safety and Environment, 2019, 19(2): 658-665 (in Chinese).
[48] 李三姗, 王楚楚, 何晓云, 等. 改性水生植物生物炭对低浓度硝态氮的吸附特性[J]. 生态与农村环境学报, 2018, 34(4): 356-362. doi: 10.11934/j.issn.1673-4831.2018.04.009 LI S S, WANG C C, HE X Y, et al. Adsorption characteristics of low concentration nitrate-nitrogen onto modified macrophytes biochar[J]. Journal of Ecology and Rural Environment, 2018, 34(4): 356-362 (in Chinese). doi: 10.11934/j.issn.1673-4831.2018.04.009
[49] 周咏春, 郭思伯, 李丹阳, 等. 新鲜和老化生物炭对土壤氮淋失及油菜氮吸收的影响[J]. 环境科学研究, 2023, 36(3): 581-589. ZHOU Y C, GUO S B, LI D Y, et al. Effects of fresh and aged biochar on soil nitrogen leaching and nitrogen uptake of rapeseed[J]. Research of Environmental Sciences, 2023, 36(3): 581-589 (in Chinese).
[50] 王朝旭, 陈绍荣, 张峰, 等. 玉米秸秆生物炭及其老化对石灰性农田土壤氨挥发的影响[J]. 农业环境科学学报, 2018, 37(10): 2350-2358. WANG C X, CHEN S R, ZHANG F, et al. Effects of fresh and aged maize straw-derived biochars on ammonia volatilization in a calcareous arable soil[J]. Journal of Agro-Environment Science, 2018, 37(10): 2350-2358 (in Chinese). able soil[J]. Journal of Agro-Environment Science, 2018, 37(10): 2350-2358(in Chinese).
[51] AHMAD Z, MOSA A, ZHAN L, et al. Biochar modulates mineral nitrogen dynamics in soil and terrestrial ecosystems: A critical review[J]. Chemosphere, 2021, 278: 130378. doi: 10.1016/j.chemosphere.2021.130378
[52] SINGH H, NORTHUP B K, RICE C W, et al. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: A meta-analysis[J]. Biochar, 2022, 4(1): 8. doi: 10.1007/s42773-022-00138-1
[53] ZHENG H, WANG Z Y, DENG X, et al. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil[J]. Geoderma, 2013, 206: 32-39. doi: 10.1016/j.geoderma.2013.04.018
[54] 耿娜, 康锡瑞, 颜晓晓, 等. 酸化棕壤施用生物炭对油菜生长及土壤性状的影响[J]. 土壤通报, 2022, 53(3): 648-658. GENG N, KANG X R, YAN X X, et al. Effects of biochar improvement on rape growth and soil properties in acidified brown earth[J]. Chinese Journal of Soil Science, 2022, 53(3): 648-658 (in Chinese).
[55] 杜思垚, 郭晓雯, 王芳霞, 等. 施用生物炭对咸水滴灌棉田土壤理化性质及酶活性的影响[J]. 西南农业学报, 2022, 35(3): 571-580. DU S Y, GUO X W, WANG F X, et al. Effects of biochar application on soil physicochemical properties and enzyme activities in saline drip irrigation cotton field[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(3): 571-580 (in Chinese).
[56] 袁访, 李开钰, 杨慧, 等. 生物炭施用对黄壤土壤养分及酶活性的影响[J]. 环境科学, 2022, 43(9): 4655-4661. YUAN F, LI K Y, YANG H, et al. Effects of biochar application on yellow soil nutrients and enzyme activities[J]. Environmental Science, 2022, 43(9): 4655-4661 (in Chinese).
[57] 郭丽欣, 王越, 杜雨婷, 等. 生物炭与秸秆配施对设施土壤有机碳矿化及理化性质的影响[J]. 北京农学院学报, 2022, 37(1): 43-50. GUO L X, WANG Y, DU Y T, et al. Effects of proportioning fertilization combined between biochar and straw on soil organic carbon mineralization and physicochemical properties of greenhouse soil[J]. Journal of Beijing University of Agriculture, 2022, 37(1): 43-50 (in Chinese).
[58] 韩晓日, 葛银凤, 李娜, 等. 连续施用生物炭对土壤理化性质及氮肥利用率的影响[J]. 沈阳农业大学学报, 2017, 48(4): 392-398. HAN X R, GE Y F, LI N, et al. Effects of continuous application of biochar on soil physic-chemical properties and nitrogen use efficiency[J]. Journal of Shenyang Agricultural University, 2017, 48(4): 392-398 (in Chinese).
[59] 郑瑞伦, 王宁宁, 孙国新, 等. 生物炭对京郊沙化地土壤性质和苜蓿生长、养分吸收的影响[J]. 农业环境科学学报, 2015, 34(5): 904-912. ZHENG R L, WANG N N, SUN G X, et al. Effects of biochar on soil properties and alfalfa growth and nutrient uptake in desertified land in Beijing suburb[J]. Journal of Agro-Environment Science, 2015, 34(5): 904-912 (in Chinese).
[60] 涂坤, 胡斐南, 许晨阳, 等. 小麦秸秆及其生物炭添加对黄绵土表面电化学性质的影响[J]. 水土保持学报, 2022, 36(1): 360-367. TU K, HU F N, XU C Y, et al. Effect of wheat straw and its biochar addition on surface electrochemical characteristics of loessal soil[J]. Journal of Soil and Water Conservation, 2022, 36(1): 360-367 (in Chinese).
[61] 纪立东, 司海丽, 李磊, 等. 生物炭输入对砾石土水肥保蓄及酿酒葡萄产量、品质的影响[J]. 中国土壤与肥料, 2021(2): 78-86. JI L D, SI H L, LI L, et al. Effects of biochar input on the yield and quality of wine grape and the preservation of water and fertilizer on gravel soil[J]. Soil and Fertilizer Sciences in China, 2021(2): 78-86 (in Chinese).
[62] 汪勇, 吕茹洁, 黎星, 等. 生物炭对双季稻生长与土壤理化性质的影响及其后效[J]. 中国土壤与肥料, 2021(4): 96-103. doi: 10.11838/sfsc.1673-6257.20258 WANG Y, LÜ R J, LI X, et al. Effects of biochar on double-season rice growth and soil physical and chemical properties and its aftereffects[J]. Soil and Fertilizer Sciences in China, 2021(4): 96-103 (in Chinese). doi: 10.11838/sfsc.1673-6257.20258
[63] 王璐, 朱占玲, 刘照霞, 等. 多种有机物料混施对苹果幼苗生长、氮素利用及土壤特性的影响[J]. 水土保持学报, 2021, 35(5): 362-368. WANG L, ZHU Z L, LIU Z X, et al. Effects of mixtures of different organic materials on apple seedling growth, nitrogen utilization and soil properties[J]. Journal of Soil and Water Conservation, 2021, 35(5): 362-368 (in Chinese).
[64] 刘帅, 赵西宁, 李钊, 等. 不同改良剂对旱地苹果园壤土团聚体和水分的影响[J]. 水土保持学报, 2021, 35(2): 193-199. LIU S, ZHAO X N, LI Z, et al. Effects of different amendments on aggregate and water content of loam soil in dryland apple orchard[J]. Journal of Soil and Water Conservation, 2021, 35(2): 193-199 (in Chinese).
[65] 孙宁婷, 王小燕, 周豪, 等. 生物质炭种类与混施深度对紫色土水分运移和氮磷流失的影响[J]. 土壤学报, 2022, 59(3): 722-732. SUN N T, WANG X Y, ZHOU H, et al. Effects of kind and incorporation depth of biochars on water movement and nitrogen and phosphorus loss in purple soil[J]. Acta Pedologica Sinica, 2022, 59(3): 722-732 (in Chinese).
[66] 刘宇娟, 谢迎新, 董成, 等. 秸秆生物炭对潮土区小麦产量及土壤理化性质的影响[J]. 华北农学报, 2018, 33(3): 232-238. LIU Y J, XIE Y X, DONG C, et al. Effects of straw biochar application on grain yield of wheat and physicochemical properties in fluvio-aquatic soil[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(3): 232-238 (in Chinese).
[67] 房彬, 李心清, 赵斌, 等. 生物炭对旱作农田土壤理化性质及作物产量的影响[J]. 生态环境学报, 2014, 23(8): 1292-1297. FANG B, LI X Q, ZHAO B, et al. Influence of biochar on soil physical and chemical properties and crop yields in rainfed field[J]. Ecology and Environmental Sciences, 2014, 23(8): 1292-1297 (in Chinese).
[68] ZHANG Y P, ZHAO H, HU W, et al. Understanding how reed-biochar application mitigates nitrogen losses in paddy soil: Insight into microbially-driven nitrogen dynamics[J]. Chemosphere, 2022, 295: 133904. doi: 10.1016/j.chemosphere.2022.133904
[69] GAO S, DeLUCA T H, CLEVELAND C C. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis[J]. Science of the Total Environment, 2019, 654: 463-472. doi: 10.1016/j.scitotenv.2018.11.124
[70] SINGH G, MAVI M S. Impact of addition of different rates of rice-residue biochar on C and N dynamics in texturally diverse soils[J]. Archives of Agronomy and Soil Science, 2018, 64(10): 1419-1431. doi: 10.1080/03650340.2018.1439161
[71] XIE Y X, DONG C, CHEN Z Y, et al. Successive biochar amendment affected crop yield by regulating soil nitrogen functional microbes in wheat-maize rotation farmland[J]. Environmental Research, 2021, 194: 110671. doi: 10.1016/j.envres.2020.110671
[72] NOVAK J M, BUSSCHER W J, WATTS D W, et al. Short-term CO2 mineralization after additions of biochar and switchgrass to a typic kandiudult[J]. Geoderma, 2010, 154(3/4): 281-288.
[73] ZAVALLONI C, ALBERTI G, BIASIOL S, et al. Microbial mineralization of biochar and wheat straw mixture in soil: A short-term study[J]. Applied Soil Ecology, 2011, 50: 45-51. doi: 10.1016/j.apsoil.2011.07.012
[74] PHILLIPS C L, MEYER K M, GARCIA-JARAMILLO M, et al. Towards predicting biochar impacts on plant-available soil nitrogen content[J]. Biochar, 2022, 4(1): 9. doi: 10.1007/s42773-022-00137-2
[75] MANIRAKIZA E, ZIADI N, ST LUCE M, et al. Nitrogen mineralization and microbial biomass carbon and nitrogen in response to co-application of biochar and paper mill biosolids[J]. Applied Soil Ecology, 2019, 142: 90-98. doi: 10.1016/j.apsoil.2019.04.025
[76] TAMMEORG P, SIMOJOKI A, MÄKELÄ P, et al. Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand[J]. Agriculture, Ecosystems & Environment, 2014, 191: 108-116.
[77] 赵光昕, 张晴雯, 刘杏认, 等. 农田土壤硝化反硝化作用及其对生物炭添加响应的研究进展[J]. 中国农业气象, 2018, 39(7): 442-452. ZHAO G X, ZHANG Q W, LIU X R, et al. Nitrification and denitrification and its response to biochar addition in agricultural soil: A review[J]. Chinese Journal of Agrometeorology, 2018, 39(7): 442-452 (in Chinese).
[78] WANG W G, WANG T, LIU Q H, et al. Biochar-mediated DNRA pathway of anammox bacteria under varying COD/N ratios[J]. Water Research, 2022, 212: 118100. doi: 10.1016/j.watres.2022.118100
[79] 曹明, 潘凤娥, 伍延正, 等. 施用生物炭对分次施氮砖红壤N2O排放的影响[J]. 云南农业大学学报(自然科学), 2021, 36(2): 338-344. CAO M, PAN F E, WU Y Z, et al. Effect of biochar amendment on N2O emission from latosol soil[J]. Journal of Yunnan Agricultural University (Natural Science), 2021, 36(2): 338-344 (in Chinese).
[80] BALL P N, MacKENZIE M D, DeLUCA T H, et al. Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils[J]. Journal of Environmental Quality, 2010, 39(4): 1243-1253. doi: 10.2134/jeq2009.0082
[81] 张星, 刘杏认, 林国林, 等. 生物炭和秸秆对华北农田表层土壤矿质氮和pH值的影响[J]. 中国农业气象, 2016, 37(2): 131-142. ZHANG X, LIU X R, LIN G L, et al. Effects of biochar and straw return on mineral nitrogen and pH of the surface soil in farmland of the North China plain[J]. Chinese Journal of Agrometeorology, 2016, 37(2): 131-142 (in Chinese).
[82] MØRKVED P T, DÖRSCH P, BAKKEN L R. The N2O product ratio of nitrification and its dependence on long-term changes in soil pH[J]. Soil Biology and Biochemistry, 2007, 39(8): 2048-2057. doi: 10.1016/j.soilbio.2007.03.006
[83] 张勇, 陈效民, 林洁, 等. 太湖地区典型农田小麦生长季土壤氮、磷的动态变化研究[J]. 土壤通报, 2013, 44(2): 380-384. ZHANG Y, CHEN X M, LIN J, et al. Dynamic changes of nitrogen and phosphorus in typical farmland soil from Tai Lake region during wheat growth[J]. Chinese Journal of Soil Science, 2013, 44(2): 380-384 (in Chinese).
[84] 张皓钰, 刘竞, 易军, 等. 生物质炭短期添加对不同类型土壤水力性质的影响[J]. 土壤, 2022, 54(2): 396-405. ZHANG H Y, LIU J, YI J, et al. Effects of short-termed biochar application on hydraulic properties of different types of soils[J]. Soils, 2022, 54(2): 396-405 (in Chinese).
[85] 崔思远, 尹小刚, 陈阜, 等. 耕作措施和秸秆还田对双季稻田土壤氮渗漏的影响[J]. 农业工程学报, 2011, 27(10): 174-179. CUI S Y, YIN X G, CHEN F, et al. Effects of tillage and straw returning on nitrogen leakage in double rice cropping field[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(10): 174-179 (in Chinese).
[86] 张雅馥, 王金满, 王敬朋, 等. 生物炭添加对矿区压实土壤水力特性的影响[J]. 农业工程学报, 2021, 37(22): 58-65. ZHANG Y F, WANG J M, WANG J P, et al. Effects of biochar addition on the hydraulic properties of compacted soils in mining areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 58-65 (in Chinese).
[87] 王燕, 庞卓, 贾月, 等. 生物炭对北京郊区砂土持水力和氮淋溶特性影响的土柱模拟研究[J]. 农业环境科学学报, 2017, 36(9): 1820-1828. WANG Y, PANG Z, JIA Y, et al. Effects of biochar on water holding capacity and nitrogen leaching of sandy soil column from a Beijing suburb[J]. Journal of Agro-Environment Science, 2017, 36(9): 1820-1828 (in Chinese).
[88] 杨涵博, 罗艳丽, 赵迪, 等. 养殖肥液不同灌溉强度下硝化-脲酶抑制剂-生物炭联合阻控氮淋溶的研究[J]. 农业环境科学学报, 2020, 39(10): 2363-2370. YANG H B, LUO Y L, ZHAO D, et al. Nitrification-urease inhibitor-biochar-controlled nitrogen leaching with different biogas slurry irrigation intensities[J]. Journal of Agro-Environment Science, 2020, 39(10): 2363-2370 (in Chinese).
[89] 朱启林, 刘丽君, 何秋香, 等. 不同水分条件下海南红壤N2O排放对不同碳源添加的响应[J]. 农业环境科学学报, 2022, 41(4): 898-908. ZHU Q L, LIU L J, HE Q X, et al. Response of N2O emissions from Hainan red soil to different carbon sources under different moisture conditions[J]. Journal of Agro-Environment Science, 2022, 41(4): 898-908 (in Chinese).
[90] 许云翔, 何莉莉, 陈金媛, 等. 生物炭对农田土壤氨挥发的影响机制研究进展[J]. 应用生态学报, 2020, 31(12): 4312-4320. XU Y X, HE L L, CHEN J Y, et al. Effects of biochar on ammonia volatilization from farmland soil: A review[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4312-4320 (in Chinese).
[91] 高尚志, 刘日月, 窦森, 等. 不同施量生物炭对土壤团聚体及其有机碳含量的影响[J]. 吉林农业大学学报, 2022, 44(4): 421-430. GAO S Z, LIU R Y, DOU S, et al. Effects of different application rates of biochar on soil aggregates and their organic carbon content[J]. Journal of Jilin Agricultural University, 2022, 44(4): 421-430 (in Chinese).
[92] 胡宁, 马志敏, 蓝家程, 等. 石漠化山地植被恢复过程土壤团聚体氮分布及与氮素矿化关系研究[J]. 环境科学, 2015, 36(9): 3411-3421. HU N, MA Z M, LAN J C, et al. Nitrogen fraction distributions and impacts on soil nitrogen mineralization in different vegetation restorations of Karst rocky desertification[J]. Environmental Science, 2015, 36(9): 3411-3421 (in Chinese).
[93] CAYUELA M L, van ZWIETEN L, SINGH B P, et al. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis[J]. Agriculture, Ecosystems & Environment, 2014, 191: 5-16.
[94] 郑洁, 程梦华, 栾璐, 等. 秸秆还田对玉米根际氨氧化微生物群落及红壤硝化潜势的影响[J]. 生态学报, 2022, 42(12): 5022-5033. ZHENG J, CHENG M H, LUAN L, et al. Effects of straw returning on the ammonia-oxidizers and nitrification in the rhizosphere of maize in a red soil[J]. Acta Ecologica Sinica, 2022, 42(12): 5022-5033 (in Chinese).
[95] 岳鹏鹏, 付灿, 江晓雨, 等. 生物炭对岩溶区黄龙病脐橙园土壤N2O排放的影响[J]. 地球学报, 2022, 43(4): 502-508. YUE P P, FU C, JIANG X Y, et al. Effects of biochar on N2O emissions from soil of huanglongbing navel orange orchard in Karst area[J]. Acta Geoscientica Sinica, 2022, 43(4): 502-508 (in Chinese).
[96] VENTEREA R T, CLOUGH T J, COULTER J A, et al. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production[J]. Scientific Reports, 2015, 5: 12153. doi: 10.1038/srep12153
[97] MUNERA-ECHEVERRI J L, MARTINSEN V, DÖRSCH P, et al. Pigeon pea biochar addition in tropical Arenosol under maize increases gross nitrification rate without an effect on nitrous oxide emission[J]. Plant and Soil, 2022, 474(1/2): 195-212.
[98] BREUILLIN-SESSOMS F, VENTEREA R T, SADOWSKY M J, et al. Nitrification gene ratio and free ammonia explain nitrite and nitrous oxide production in urea-amended soils[J]. Soil Biology and Biochemistry, 2017, 111: 143-153. doi: 10.1016/j.soilbio.2017.04.007
[99] SHU D T, HE Y L, YUE H, et al. Effects of Fe(ii) on microbial communities, nitrogen transformation pathways and iron cycling in the anammox process: Kinetics, quantitative molecular mechanism and metagenomic analysis[J]. RSC Advances, 2016, 6(72): 68005-68016. doi: 10.1039/C6RA09209H
[100] CHEN Y, JIA F X, LIU Y J, et al. The effects of Fe(III) and Fe(II) on anammox process and the Fe-N metabolism[J]. Chemosphere, 2021, 285: 131322. doi: 10.1016/j.chemosphere.2021.131322
[101] ZHU G B, WANG X M, WANG S Y, et al. Towards a more labor-saving way in microbial ammonium oxidation: A review on complete ammonia oxidization (comammox)[J]. Science of the Total Environment, 2022, 829: 154590. doi: 10.1016/j.scitotenv.2022.154590
[102] HU H W, HE J Z. Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle[J]. Journal of Soils and Sediments, 2017, 17(12): 2709-2717. doi: 10.1007/s11368-017-1851-9
[103] SUN P, ZHAO Z T, FAN P S, et al. Ammonia- and nitrite-oxidizing bacteria are dominant in nitrification of maize rhizosphere soil following combined application of biochar and chemical fertilizer[J]. Frontiers in Microbiology, 2021, 12: 715070. doi: 10.3389/fmicb.2021.715070
[104] CAYUELA M L, JEFFERY S, van ZWIETEN L. The molar H: Corg ratio of biochar is a key factor in mitigating N2O emissions from soil[J]. Agriculture, Ecosystems & Environment, 2015, 202: 135-138.
[105] KAPPLER A, WUESTNER M L, RUECKER A, et al. Biochar as an Electron Shuttle between Bacteria and Fe(III) Minerals[J]. Environmental Science & Technology Letters, 2014, 1(08): 339-344.
[106] CAYUELA M L, SÁNCHEZ-MONEDERO M A, ROIG A, et al. Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions?[J]. Scientific Reports, 2013, 3: 1732. doi: 10.1038/srep01732
[107] AAMER M, BILAL CHATTHA M, MAHMOOD A, et al. Rice residue-based biochar mitigates N2O emission from acid red soil[J]. Agronomy, 2021, 11(12): 2462. doi: 10.3390/agronomy11122462
[108] JI C, LI S Q, GENG Y J, et al. Decreased N2O and NO emissions associated with stimulated denitrification following biochar amendment in subtropical tea plantations[J]. Geoderma, 2020, 365: 114223. doi: 10.1016/j.geoderma.2020.114223
[109] DUAN P P, ZHANG Q Q, ZHANG X, et al. Mechanisms of mitigating nitrous oxide emissions from vegetable soil varied with manure, biochar and nitrification inhibitors[J]. Agricultural and Forest Meteorology, 2019, 278: 107672. doi: 10.1016/j.agrformet.2019.107672
[110] LIU X R, TANG Z M, ZHANG Q W, et al. The contrasting effects of biochar and straw on N2O emissions in the maize season in intensively farmed soil[J]. Environmental Science and Pollution Research, 2021, 28(23): 29806-29819. doi: 10.1007/s11356-021-12722-2
[111] ZHANG Q Q, WU Z, ZHANG X, et al. Biochar amendment mitigated N2O emissions from paddy field during the wheat growing season[J]. Environmental Pollution, 2021, 281: 117026. doi: 10.1016/j.envpol.2021.117026
[112] 陈晨, 许欣, 毕智超, 等. 生物炭和有机肥对菜地土壤N2O排放及硝化、反硝化微生物功能基因丰度的影响[J]. 环境科学学报, 2017, 37(5): 1912-1920. CHEN C, XU X, BI Z C, et al. Effects of biochar and organic manure on N2O emissions and the functional gene abundance of nitrification and denitrification microbes under intensive vegetable production[J]. Acta Scientiae Circumstantiae, 2017, 37(5): 1912-1920 (in Chinese).
[113] 王妙莹, 许旭萍, 王维奇, 等. 炉渣与生物炭施加对稻田温室气体排放及其相关微生物影响[J]. 环境科学学报, 2017, 37(3): 1046-1056. WANG M Y, XU X P, WANG W Q, et al. Effect of slag and biochar amendment on greenhouse gases emissions and related microorganisms in paddy fields[J]. Acta Scientiae Circumstantiae, 2017, 37(3): 1046-1056 (in Chinese).
[114] 朱永官, 王晓辉, 杨小茹, 等. 农田土壤N2O产生的关键微生物过程及减排措施[J]. 环境科学, 2014, 35(2): 792-800. ZHU Y G, WANG X H, YANG X R, et al. Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies[J]. Environmental Science, 2014, 35(2): 792-800 (in Chinese).
[115] CHEN Z M, DING W X, XU Y H, et al. Importance of heterotrophic nitrification and dissimilatory nitrate reduction to ammonium in a cropland soil: Evidences from a 15N tracing study to literature synthesis[J]. Soil Biology and Biochemistry, 2015, 91: 65-75. doi: 10.1016/j.soilbio.2015.08.026
[116] ASILOGLU R, SEVILIR B, SAMUEL S O, et al. Effect of protists on rhizobacterial community composition and rice plant growth in a biochar amended soil[J]. Biology and Fertility of Soils, 2021, 57(2): 293-304. doi: 10.1007/s00374-020-01525-1
[117] SILVER W L, HERMAN D J, FIRESTONE M K. Dissimilatory nitrate reduction to ammonium in upland tropical forest soils[J]. Ecology, 2001, 82(9): 2410-2416. doi: 10.1890/0012-9658(2001)082[2410:DNRTAI]2.0.CO;2
[118] YIN S X, CHEN D, CHEN L M, et al. Dissimilatory nitrate reduction to ammonium and responsible microorganisms in two Chinese and Australian paddy soils[J]. Soil Biology and Biochemistry, 2002, 34(8): 1131-1137. doi: 10.1016/S0038-0717(02)00049-4
[119] 杨杉, 吴胜军, 蔡延江, 等. 硝态氮异化还原机制及其主导因素研究进展[J]. 生态学报, 2016, 36(5): 1224-1232. YANG S, WU S J, CAI Y J, et al. The synergetic and competitive mechanism andthe dominant factors of dissimilatory nitrate reduction processes: A review[J]. Acta Ecologica Sinica, 2016, 36(5): 1224-1232 (in Chinese).
[120] DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583): 504-509. doi: 10.1038/nature16461
[121] HU J J, ZHAO Y X, YAO X W, et al. Dominance of comammox Nitrospira in soil nitrification[J]. Science of the Total Environment, 2021, 780: 146558. doi: 10.1016/j.scitotenv.2021.146558
[122] CHENG Y, ELRYS A S, MERWAD A R M, et al. Global patterns and drivers of soil dissimilatory nitrate reduction to ammonium[J]. Environmental Science & Technology, 2022, 56(6): 3791-3800.
[123] 石玉龙, 刘杏认, 高佩玲, 等. 生物炭和有机肥对华北农田盐碱土N2O排放的影响[J]. 环境科学, 2017, 38(12): 5333-5343. SHI Y L, LIU X R, GAO P L, et al. Effects of biochar and organic fertilizer on saline-alkali soil N2O emission in the North China plain[J]. Environmental Science, 2017, 38(12): 5333-5343 (in Chinese).
[124] HODGE A, ROBINSON D, GRIFFITHS B S, et al. Why plants bother: Root proliferation results in increased nitrogen capture from an organic patch when two grasses compete[J]. Plant, Cell & Environment, 1999, 22(7): 811-820.
[125] BACKER R G M, SAEED W, SEGUIN P, et al. Root traits and nitrogen fertilizer recovery efficiency of corn grown in biochar-amended soil under greenhouse conditions[J]. Plant and Soil, 2017, 415(1): 465-477.
[126] XIANG Y Z, DENG Q, DUAN H L, et al. Effects of biochar application on root traits: A meta-analysis[J]. GCB Bioenergy, 2017, 9(10): 1563-1572. doi: 10.1111/gcbb.12449
[127] 李婷, 张丽, 刘大会, 等. 菌根与间作对紫色土-水界面氮流失的削减效应[J]. 土壤学报, 2021, 58(1): 191-201. LI T, ZHANG L, LIU D H, et al. Effects of native AMF and intercropping reducing nitrogen loss from soil-water interface in purple soil[J]. Acta Pedologica Sinica, 2021, 58(1): 191-201 (in Chinese).
[128] ZHAO Y, ZHAI P, LI B, et al. Banana, pineapple, cassava and sugarcane residue biochars cannot mitigate ammonia volatilization from latosols in tropical farmland.[J]. The Science of the total environment, 2022, 821: 153427. doi: 10.1016/j.scitotenv.2022.153427
[129] CALAMAI A, CHIARAMONTI D, CASINI D, et al. Short-term effects of organic amendments on soil properties and maize ( Zea maize L. ) growth[J]. Agriculture, 2020, 10(5): 158. doi: 10.3390/agriculture10050158
[130] AAMER M, SHAABAN M, HASSAN M U, et al. Biochar mitigates the N2O emissions from acidic soil by increasing the nosZ and nirK gene abundance and soil pH[J]. Journal of Environmental Management, 2020, 255: 109891. doi: 10.1016/j.jenvman.2019.109891
[131] SHA Z P, LI Q Q, LV T T, et al. Response of ammonia volatilization to biochar addition: A meta-analysis[J]. Science of the Total Environment, 2019, 655: 1387-1396. doi: 10.1016/j.scitotenv.2018.11.316
[132] ZHANG Y F, WANG J M, FENG Y. The effects of biochar addition on soil physicochemical properties: A review[J]. CATENA, 2021, 202: 105284. doi: 10.1016/j.catena.2021.105284
[133] TAN X F, ZHU S S, WANG R P, et al. Role of biochar surface characteristics in the adsorption of aromatic compounds: Pore structure and functional groups[J]. Chinese Chemical Letters, 2021, 32(10): 2939-2946. doi: 10.1016/j.cclet.2021.04.059
[134] ZHOU S Z, WEN X, CAO Z, et al. Modified cornstalk biochar can reduce ammonia emissions from compost by increasing the number of ammonia-oxidizing bacteria and decreasing urease activity[J]. Bioresource Technology, 2021, 319: 124120. doi: 10.1016/j.biortech.2020.124120
[135] DEENIK J L, McCLELLAN T, UEHARA G, et al. Charcoal volatile matter content influences plant growth and soil nitrogen transformations[J]. Soil Science Society of America Journal, 2010, 74(4): 1259-1270. doi: 10.2136/sssaj2009.0115
[136] 高镜清, 黄五星, 黄宇, 等. 铵态氮胁迫下金鱼藻的过氧化损伤和抗氧化能力[J]. 武汉大学学报(理学版), 2010, 56(5): 590-596. GAO J Q, HUANG W X, HUANG Y, et al. NH4+-N stress on peroxidation damage and antioxidative capability of Ceratophyllum demersum[J]. Journal of Wuhan University (Natural Science Edition), 2010, 56(5): 590-596 (in Chinese).
[137] 马剑敏, 靳同霞, 贺锋, 等. 菹草对铵氮和硝氮急性胁迫的响应[J]. 环境科学与技术, 2009, 32(5): 26-30,87. MA J M, JIN T X, HE F, et al. Response of Potamogeton crispus to acute stress of NH4+-N or NO3-N[J]. Environmental Science & Technology, 2009, 32(5): 26-30,87 (in Chinese).
[138] DONG Y B, WU Z, ZHANG X, et al. Dynamic responses of ammonia volatilization to different rates of fresh and field-aged biochar in a rice-wheat rotation system[J]. Field Crops Research, 2019, 241: 107568. doi: 10.1016/j.fcr.2019.107568
[139] 唐司尘, 杨肖松, 张万通, 等. 鸟粪石及生物炭包膜缓释肥在石灰性土壤中的氮磷释放特性[J]. 中国科学院大学学报, 2021, 38(1): 83-93. TANG S C, YANG X S, ZHANG W T, et al. Characteristics of nitrogen and phosphorus release from struvite coated urea and struvite combined with biochar coated urea in calcareous soil[J]. Journal of University of Chinese Academy of Sciences, 2021, 38(1): 83-93 (in Chinese).
[140] 马晓刚, 何建桥, 陈玉蓝, 等. 负载NH4+-N生物炭对土壤N2O-N排放和NH3-N挥发的影响[J]. 环境科学, 2021, 42(9): 4548-4557. MA X G, HE J Q, CHEN Y L, et al. Gaseous nitrogen emission from soil after application of NH4+-N loaded biochar[J]. Environmental Science, 2021, 42(9): 4548-4557 (in Chinese).
[141] 王思源, 宁建凤, 王荣辉, 等. 黏土矿物混合生物炭包膜尿素的制备及其氮素污染减排潜力[J]. 水土保持研究, 2019, 26(5): 151-157. WANG S Y, NING J F, WANG R H, et al. Clay mineral and biochar mixture coated urea preparation and its nitrogen pollution reduction potential[J]. Research of Soil and Water Conservation, 2019, 26(5): 151-157 (in Chinese).
[142] RASSE D P, WELDON S, JONER E J, et al. Enhancing plant N uptake with biochar-based fertilizers: Limitation of sorption and prospects[J]. Plant and Soil, 2022, 475(1): 213-236.
[143] 魏存, 吕豪豪, 汪玉瑛, 等. 铁改性稻壳生物炭对铵态氮的吸附效果研究[J]. 植物营养与肥料学报, 2021, 27(4): 595-609. WEI C, LÜ H H, WANG Y Y, et al. Adsorption effectiveness of ammonium nitrogen by iron-modified rice husk biochars[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(4): 595-609 (in Chinese).
[144] 智燕彩, 赖欣, 谭炳昌, 等. 铁锰镁离子改性生物炭对溶液硝态氮的吸附性能研究[J]. 核农学报, 2020, 34(7): 1588-1597. ZHI Y C, LAI X, TAN B C, et al. Adsorption of nitrate by iron, manganese and magnesium ion modified biochars[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(7): 1588-1597 (in Chinese).