[1] |
WANG J L, WANG S Z. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review[J]. Journal of Environmental Management, 2016, 182: 620-640. doi: 10.1016/j.jenvman.2016.07.049
|
[2] |
严清, 张怡昕. 重庆主城区水域典型PPCPs污染水平及生态风险评估[J]. 环境科学研究, 2013, 26(11): 1179-1184.
|
[3] |
万众. 废水中典型药物化合物的类芬顿氧化特性及去除机理研究[D]. 北京: 清华大学, 2018.
|
[4] |
GOBEL A, THOMSEN A, MCARDELL C S, et al. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment[J]. Environmental Science & Technology, 2005, 39(11): 3981-3989.
|
[5] |
ZHANG Y, GEISSEN S, GAL C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies[J]. Chemosphere, 2008, 73(8): 1151-1161. doi: 10.1016/j.chemosphere.2008.07.086
|
[6] |
翟俊, 胡炜, 王泉峰, 等. 异化Mn(IV)还原耦合降解卡马西平及双氯芬酸[J]. 中国环境科学, 2021, 41(4): 1704-1710.
|
[7] |
RUZIWA D T, OLUWALANA A E, MUPA M, et al. Pharmaceuticals in wastewater and their photocatalytic degradation using nano-enabled photocatalysts[J]. Journal of Water Process Engineering, 2023, 54: 103880. doi: 10.1016/j.jwpe.2023.103880
|
[8] |
LIU W, ZHANG W, LIU M, et al. Fabrication of niobium doped titanate nanoflakes with enhanced visible-light-driven photocatalytic activity for efficient ibuprofen degradation[J]. Chemistry Letters, 2019, 30(12): 2177-2180.
|
[9] |
毕洪飞, 刘劲松, 吴正颖, 等. 硫化铟锌的改性合成及光催化特性[J]. 化学进展, 2021, 33(12): 2334-2347.
|
[10] |
BO L L, KIRIARACHCHI H D, BOBB J A, et al. Preparation, activity, and mechanism of ZnIn2S4-based catalysts for photocatalytic degradation of atrazine in aqueous solution[J]. Journal of Water Process Engineering, 2020, 36: 101334. doi: 10.1016/j.jwpe.2020.101334
|
[11] |
田野. 硫化铟锌掺杂钯光催化降解水中卡马西平特性研究[D]. 西安: 西安建筑科技大学, 2022.
|
[12] |
ASGARI G, ROSHANI B, GHANZADEH G. The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice stone[J]. Journal of Hazardous Materials, 2012, 217-218: 123-132. doi: 10.1016/j.jhazmat.2012.03.003
|
[13] |
唐西梅. Pd-ZnIn2S4负载型催化剂制备及其光催化降解水中阿特拉津特性研究[D]. 西安: 西安建筑科技大学, 2022.
|
[14] |
LI Y, FANG X, WANG Y, et al. Highly Transparent and Water-Enabled Healable Antifogging and Frost-Resisting Films Based on Poly(vinyl alcohol)-Nafion Complexes[J]. Chemistry of Materials, 2016, 28(19): 6975-6984. doi: 10.1021/acs.chemmater.6b02684
|
[15] |
GAAZ T S, SULONG A B, AKHTAR M N, et al. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites[J]. Molecules, 2015, 20(12): 22833-22847. doi: 10.3390/molecules201219884
|
[16] |
SAINI I, SHARMA A, DHIMAN R, et al. Grafted SiC nanocrystals: For enhanced optical, electrical and mechanical properties of polyvinyl alcohol[J]. Journal of Alloys and Compounds, 2017, 714: 172-180. doi: 10.1016/j.jallcom.2017.04.183
|
[17] |
盛野, 王洪艳. 改进聚乙烯醇基料耐水性的研究[J]. 化学世界, 2001, 12(6): 0367-6358.
|
[18] |
刘梦娇. 光活化过硫酸盐降解水中PhACs特性研究[D]. 西安: 西安建筑科技大学, 2023.
|
[19] |
BO L L, FENG L, FU J T, et al. The fate of typical pharmaceuticals in wastewater treatment plants of Xi’an city in China[J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 2203-2211. doi: 10.1016/j.jece.2015.08.001
|
[20] |
谭娜, 卜龙利, 高波, 等. ZnIn2S4光催化降解水中痕量药物卡马西平的特性[J]. 环境工程学报, 2017, 11(1): 223-229. doi: 10.12030/j.cjee.201508197
|
[21] |
BO L L, HE K B, TAN N, et al. Photocatalytic oxidation of trace carbamazepine in aqueous solution by visible-light-driven Znln2S4: Performance and mechanism[J]. Journal of Environmental Management, 2017, 190: 259-265. doi: 10.1016/j.jenvman.2016.12.050
|
[22] |
CHEN Z, LI D, ZHANG W, et al. Low-temperature and template-free synthesis of ZnIn2S4 microspheres[J]. Inorganic Chemistry, 2008, 47(21): 9766-9772. doi: 10.1021/ic800752t
|
[23] |
ZOU P, LI Z G, JIA P Q, et al. Enhanced photocatalytic activity of bismuth oxychloride by in-situ introducing oxygen vacancy[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 623: 126705. doi: 10.1016/j.colsurfa.2021.126705
|
[24] |
GUAN M, XIAO C, ZHANG J, et al. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets[J]. Journal of the American Chemical Society, 2013, 135: 10410-10417.
|
[25] |
RAO T R, OMKARAM I, BRAHMAM K V, Role of copper content on EPR, susceptibility and optical studies in poly(vinylalcohol) (PVA) complexed poly(ethyleneglycol) (PEG) polymer films[J]. Journal of Molecular Structure, 2013, 1036: 94-101.
|
[26] |
MENG X C, ZHANG Z S. Bi2MoO6 co-modified by reduced graphene oxide and palladium (Pd2+ and Pd0) with enhanced photocatalytic decomposition of phenol[J]. Applied Catalysis B:Environmental, 2017, 209: 383-393. doi: 10.1016/j.apcatb.2017.01.033
|
[27] |
REDA M M, AHMED S. Palladium/zinc indium sulfide microspheres: Enhanced photocatalysts prepare methanol under visible light conditions[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65: 498-504. doi: 10.1016/j.jtice.2016.05.027
|
[28] |
MUHAMMAND A, MAZHAR A K, ZULFIQAR A R. Fabrication of reduced graphene oxide nanosheets doped PVA composite films for tailoring their opto-mechanical properties[J]. Applied Physics A:Materials Science and Processing, 2017, 424: 123.
|
[29] |
SHI W L, CHEN Z Z, LU J L, et al. Construction of ZrC@ZnIn2S4 core-shell heterostructures for boosted near-infrared-light driven photothermal-assisted photocatalytic H2 evolution[J]. Chemical Engineering Journal, 2023, 474: 145690. doi: 10.1016/j.cej.2023.145690
|
[30] |
PENG X, LI J, YI L, et al. Ultrathin ZnIn2S4 nanosheets decorating PPy nanotubes toward simultaneous photocatalytic H2 production and 1, 4-benzenedimethanol valorization[J]. Applied Catalysis B-environmental, 2022, 300: 120737. doi: 10.1016/j.apcatb.2021.120737
|
[31] |
XU Z, SHI W L, SUN H R, et at. Carbon dots as solid-state electron mediator and electron acceptor in S-scheme heterojunction for boosted photocatalytic hydrogen evolution[J]. Applied Surface Science, 2022, 595: 153482. doi: 10.1016/j.apsusc.2022.153482
|
[32] |
LEE H J, LEE H S, LEE C H. Degradation of diclofenac and carbamazepine by the copper(II)-catalyzed dark and photo-assisted Fenton-like systems[J]. Chemical Engineering Journal, 2014, 245: 1385-8947.
|
[33] |
QIAN J, XUE Y, AO Y H, et al. Hydrothermal synthesis of CeO2/NaNbO3 composites with enhanced photocatalytic performance[J]. Chinese Journal of Catalysis, 2018, 39: 682-692. doi: 10.1016/S1872-2067(17)62975-9
|