[1] |
刘志长. 合流制排水管道沉积物的沉积状况及控制技术研究[D]. 长沙: 湖南大学, 2011.
|
[2] |
黄乃先, 齐一凡, 金伟. 排水管道沉积物控制的研究进展[J]. 环境工程技术学报, 2021, 11(3): 507-513.
|
[3] |
张宇, 李明智, 梅荣武, 等. 应用柠檬酸和酶制剂协同减量处理活性污泥[J]. 环境工程学报, 2017, 11(3): 1947-1952. doi: 10.12030/j.cjee.201511093
|
[4] |
AHYERRE M, CHEBBO G. Identification of in-sewer sources of organic solids contributing to combined sewer overflows[J]. Environmental Technology, 2002, 23(9): 1063-1073. doi: 10.1080/09593332308618353
|
[5] |
陈珂莉, 李朋, 金伟, 等. 排水管道沉积物中胞外聚合物的提取及检测方法研究[J]. 中国给水排水, 2018, 34(7): 32-36. doi: 10.19853/j.zgjsps.1000-4602.2018.07.007
|
[6] |
SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review[J]. Biotechnology Advances, 2010, 28(6): 882-894. doi: 10.1016/j.biotechadv.2010.08.001
|
[7] |
钟为章, 丁雅婷, 秦学, 等. 城镇污水剩余污泥生物法水解研究进展[J]. 工业水处理, 2022, 42(10): 38-45.
|
[8] |
YANG Q, LUO K, LI X M, et al. Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes[J]. Bioresource Technology, 2010, 101(9): 2924-2930. doi: 10.1016/j.biortech.2009.11.012
|
[9] |
LU Q, LIU Q, LIU X, et al. Enhanced dewaterability of anaerobically fermented sludge through acid-driven indigenous enzymatic hydrolysis[J]. Journal of Environmental Management, 2022, 323: 116212. doi: 10.1016/j.jenvman.2022.116212
|
[10] |
周语桐, 杨英, 李卫华, 等. 表面活性剂增强超声法提取污泥胞外聚合物[J]. 湖北理工学院学报, 2023, 39(1): 55-59.
|
[11] |
陈东杰, 夏霆, 张旭, 等. 城市污泥脱水预处理技术研究进展[J]. 南京工业大学学报(自然科学版), 2023, 45(1): 12-23.
|
[12] |
石晶金, 方溢文, 官妍. 三种表面活性剂对表皮葡萄球菌生物膜渗透性及成膜关键基因agr表达的影响[J]. 中国感染控制杂志, 2023, 22(3): 267-274. doi: 10.12138/j.issn.1671-9638.20233382
|
[13] |
王怡, 曲鹏程, 郑淑健, 等. SDS对污泥水解过程中胞外聚合物及性状的影响[J]. 中国给水排水, 2013, 29(15): 85-88.
|
[14] |
WANG L F, WANG L L, LI W W, et al. Surfactant-mediated settleability and dewaterability of activated sludge[J]. Chemical Engineering Science, 2014, 116: 228-234. doi: 10.1016/j.ces.2014.05.014
|
[15] |
LUO K, YANG Q, YU J, et al. Combined effect of sodium dodecyl sulfate and enzyme on waste activated sludge hydrolysis and acidification[J]. Bioresource Technology, 2011, 102(14): 7103-7110. doi: 10.1016/j.biortech.2011.04.023
|
[16] |
KAVITHA S, JAYASHREE C, KUMAR SA, et al. The enhancement of anaerobic biodegradability of waste activated sludge by surfactant mediated biological pretreatment[J]. Bioresource Technology, 2014, 168: 159-166. doi: 10.1016/j.biortech.2014.01.118
|
[17] |
陈子浩. 十二烷基苯磺酸钠对热水解污泥厌氧消化的影响研究[D]. 北京: 北京化工大学, 2022.
|
[18] |
陈小粉, 李小明, 杨麒, 等. 淀粉酶促进剩余污泥热水解的研究[J]. 中国环境科学, 2011, 31(3): 396-401.
|
[19] |
李超, 高健磊, 闫怡新, 等. 中性蛋白酶催化水解污泥提取蛋白质的研究[J]. 能源环境保护, 2019, 33(6): 18-22.
|
[20] |
张琴, 何璐, 常少英, 等. 污泥干化冷凝废水电化学脱氮试验研究[J]. 绿色科技, 2022, 24(22): 104-108. doi: 10.16663/j.cnki.lskj.2022.22.016
|
[21] |
GUNG R, YUAN X, WU Z, et al. Functionality of surfactants in waste-activated sludge treatment: A review[J]. Science of the Total Environment, 2017, 609: 1433-1442. doi: 10.1016/j.scitotenv.2017.07.189
|
[22] |
WANG L F, HUANG B C, WANG L L, et al. Experimental and theoretical analyses on the impacts of ionic surfactants on sludge properties[J]. Science of the Total Environment, 2018, 633: 198-205. doi: 10.1016/j.scitotenv.2018.03.187
|
[23] |
HE X, HE L, LIN Z, et al. Deep dewatering of activated sludge using composite conditioners of surfactant, acid and flocculant: The mechanism and dosage model[J]. Science of the Total Environment, 2022, 806: 150899. doi: 10.1016/j.scitotenv.2021.150899
|
[24] |
童震松, 洪晨, 邢奕, 等. 表面活性剂调理下污泥中胞外聚合物分布与束缚水含量的关系[J]. 中南大学学报(自然科学版), 2014, 45(8): 2913-2919.
|
[25] |
KAVITHA S, KUMAR SA, YOGALAKSHMI KN, et al. Effect of enzyme secreting bacterial pretreatment on enhancement of aerobic digestion potential of waste activated sludge interceded through EDTA[J]. Bioresource Technology, 2013, 150: 210-219. doi: 10.1016/j.biortech.2013.10.021
|
[26] |
左锦静, 姚永志. 荧光法研究表面活性剂SDS与蛋白质的相互作用[J]. 轻工科技, 2018, 34(3): 16-17.
|
[27] |
HUANG X, SHEN C, LIU J, et al. Improved volatile fatty acid production during waste activated sludge anaerobic fermentation by different bio-surfactants[J]. Chemical Engineering Journal, 2015, 264: 280-290. doi: 10.1016/j.cej.2014.11.078
|
[28] |
宋云龙, 张金松, 朱佳, 等. 基于高通量测序的微生物强化污泥减量工艺中微生物群落解析[J]. 中国环境科学, 2016, 36(7): 2099-2107.
|
[29] |
相延铮, 何成达, 朱腾义, 等. 碳源对除磷颗粒污泥去除效果和微生物特性的影响[J]. 工业水处理, 2023,DOI: 10.19965/j.cnki.iwt.2022-1178.
|
[30] |
潘禹, 刘鲡, 智笑涵, 等. 纳米CaO_2促进污泥厌氧发酵产酸性能的微生物机制[J]. 环境科学研究, 2023, 36(7): 1426-1434. doi: 10.13198/j.issn.1001-6929.2023.03.05
|
[31] |
代梨梨, 彭亮, 陶玲, 等. 硫酸盐对淡水养殖池塘表层底泥微生物的影响[J]. 微生物学报, 2023, 63(10): 3811-3824. doi: 10.13343/j.cnki.wsxb.20230075
|