[1] 徐艳, 师荣光, 李厚禹, 等. 抗生素-重金属复合污染对土壤中细菌耐药的影响[J]. 土壤通报, 2019, 50(2): 457-462. doi: 10.19336/j.cnki.trtb.2019.02.29
[2] HE C F, ZHOU J N, YANG C, et al. Accumulation, transportation, and distribution of tetracycline and cadmium in rice[J]. Journal of Environmental Sciences, 2023, 126: 58-69. doi: 10.1016/j.jes.2022.03.034
[3] WU Y Q, WEN Q X, CHEN Z Q, et al. Response of antibiotic resistance to the co-exposure of sulfamethoxazole and copper during swine manure composting[J]. Science of the Total Environment, 2022(805): 150086.
[4] SU Y, XIONG J P, FANG C, et al. Combined effects of amoxicillin and copper on nitrogen transformation and the microbial mechanisms during aerobic composting of cow manure[J]. Journal of Hazardous Materials, 2023, 455: 131569. doi: 10.1016/j.jhazmat.2023.131569
[5] ZHANG P, SIDA O Y, LI P, et al. Ultrahigh removal performance of lead from wastewater by tricalcium aluminate via precipitation combining flocculation with amorphous aluminum[J]. Journal of Cleaner Production, 2020, 246: 118728. doi: 10.1016/j.jclepro.2019.118728
[6] JI X L, SHEN Q H, LIU F, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China[J]. Journal of Hazardous Materials, 2012, 235-236: 178-185. doi: 10.1016/j.jhazmat.2012.07.040
[7] VANESA S M, AVELINO N D, ESPERANZA A R, et al. Tolerance of soil bacterial community to tetracycline antibiotics induced by As, Cd, Zn, Cu, Ni, Cr, and Pb pollution[J]. Soil, 2022, 8(1): 437-449. doi: 10.5194/soil-8-437-2022
[8] YUAN L, YAN M, HUANG Z, et al. Influences of pH and metal ions on the interactions of oxytetracycline onto nano-hydroxyapatite and their co-adsorption behavior in aqueous solution[J]. Journal of Colloid Interface Science, 2019, 541: 101-113. doi: 10.1016/j.jcis.2019.01.078
[9] PAN X, QIANG Z M, BEN W W, et al. Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China[J]. Chemosphere, 2011, 84: 695-700. doi: 10.1016/j.chemosphere.2011.03.022
[10] CHEN Z Q, WANG Y, WEN Q X. Effects of chlortetracycline on the fate of multi-antibiotic resistance genes and the microbial community during swine manure composting[J]. Environmental Pollution, 2018, 237: 977-987. doi: 10.1016/j.envpol.2017.11.009
[11] GUO T F, LI Z Y, SHAO Y Q, et al. Effects of Oxytetracycline/Lead Pollution Alone and in the Combined Form on Antibiotic Resistance Genes, Mobile Genetic Elements, and Microbial Communities in the Soil[J]. 2022, 19: 15619.
[12] WANG L J, YAN X J, ZHU L S, et al. Spread and driving factors of antibiotic resistance genes in soil-plant system in long-term manured greenhouse under lead (Pb) stress[J]. Science of the Total Environment, 2023, 855: 158756. doi: 10.1016/j.scitotenv.2022.158756
[13] WANG Y, WANG X J, LI Y, et al. Effects of struvite-loaded zeolite amendment on the fate of copper, tetracycline and antibiotic resistance genes in microplastic-contaminated soil[J]. Chemical Engineering Journal, 2022, 430: 130478. doi: 10.1016/j.cej.2021.130478
[14] SUN M, YE M, WU J, et al. Positive relationship detected between soil bioaccessible organic pollutants and antibiotic resistance genes at dairy farms in Nanjing, Eastern China[J]. Environmental Pollution, 2015, 206: 421-428. doi: 10.1016/j.envpol.2015.07.022
[15] LIU K, SUN M M, YE M, et al. Coexistence and association between heavy metals, tetracycline and corresponding resistance genes in vermicomposts originating from different substrates[J]. Environmental Pollution, 2019, 244: 28-37. doi: 10.1016/j.envpol.2018.10.022
[16] LI Y, DENG M J, WANG X J, et al. In-situ remediation of oxytetracycline and Cr(VI) co-contaminated soil and groundwater by using blast furnace slag-supported nanosized Fe0/FeSx[J]. Chemical Engineering Journal, 2021, 412: 128706. doi: 10.1016/j.cej.2021.128706
[17] CUI E P, CUI B J, FAN X Y, et al. Ryegrass (Lolium multiflorum L. ) and Indian mustard (Brassica juncea L.) intercropping can improve the phytoremediation of antibiotics and antibiotic resistance genes but not heavy metals[J]. Science of the Total Environment, 2021, 784: 147093.
[18] ZHANG X R, GONG Z G, ALLINSON G, et al. Joint effects of bacterium and biochar in remediation of antibiotic-heavy metal contaminated soil and responses of resistance gene and microbial community[J]. Chemosphere, 2022, 299: 134333. doi: 10.1016/j.chemosphere.2022.134333
[19] FANG S E, TSANG D C W, ZHOU F S, et al. Stabilization of cationic and anionic metal species in contaminated soils using sludge-derived biochar[J]. Chemosphere, 2016, 149: 263-271. doi: 10.1016/j.chemosphere.2016.01.060
[20] BEESLEY L, MARMIROLI M. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar[J]. Environmental Pollution, 2011, 159: 474-480. doi: 10.1016/j.envpol.2010.10.016
[21] XIA P, WANG X J, WANG X, et al. Struvite crystallization combined adsorption of phosphate and ammonium from aqueous solutions by mesoporous MgO loaded diatomite[J]. Colloid Surface A, 2016, 506: 220-227. doi: 10.1016/j.colsurfa.2016.05.101
[22] LI J, WANG X J, WANG J, et al. Simultaneous recovery of microalgae, ammonium and phosphate from simulated wastewater by MgO modified diatomite[J]. Chemical Engineering Journal, 2019, 362: 802-811. doi: 10.1016/j.cej.2019.01.094
[23] LI J, WANG X J, WANG Y, et al. Insight into the co-adsorption behaviors and interface interactions mechanism of chlortetracycline and lead onto struvite loaded diatomite[J]. Journal of Hazardous Materials, 2021, 405: 124210. doi: 10.1016/j.jhazmat.2020.124210
[24] 曾巧云, 丁丹, 檀笑. 中国农业土壤中四环素类抗生素污染现状及来源研究进展[J]. 生态环境学报, 2018, 27(9): 1774-1782.
[25] 潘霞, 陈励科, 卜元卿, 等. 畜禽有机肥对典型蔬果地土壤剖面重金属与抗生素分布的影响[J]. 生态与农村环境学报, 2012, 28(5): 518-525.
[26] 王瑾, 韩剑众. 饲料中重金属和抗生素对土壤和蔬菜的影响[J]. 生态与农村环境学报, 2008(4): 90-93.
[27] 卢信, 罗佳, 高岩, 等. 畜禽养殖废水中抗生素和重金属的污染效应及其修复研究进[J]. 江苏农业学报, 2014, 30(3): 671-681.
[28] 王驰. 磺胺甲恶唑和卡马西平在碳纳米材料上的竞争和补充吸附行为研究[D]. 昆明: 昆明理工大学, 2015.
[29] 王健, 夏鹏, 张志昊, 等. 鸟粪石负载硅藻土复合材料对土壤中锌的稳定化作用[J]. 环境工程学报, 2018, 12(4): 1164-1170.
[30] WANG H, WANG X J, LI J, et al. Comparison of palygorskite and struvite supported palygorskitederived from phosphate recovery in wastewater for in-situimmobilization of Cu, Pb and Cd in contaminated soil[J]. Journal of Hazardous Materials, 2018, 346: 273-284. doi: 10.1016/j.jhazmat.2017.12.042
[31] YAN Y, XING B S, RAO C S P, et al. Importance of adsorption (hole-filling) mechanism for hydrophobic organic contaminants on an aquifer kerogen isolate[J]. Environmental Science & Technology, 2004, 38: 4340-4348.
[32] LIU J, MA Y N, ZHU D Q, et al. Polystyrene nanoplastics-enhanced contaminant transport: role of irreversible adsorption in glassy polymeric domain[J]. Environmental Science & Technology, 2018, 52: 2677-2685.
[33] HUANG W L, JR W J W. A distributed reactivity model for sorption by soils and sediments. 10. relationships between desorption, hysteresis, and the chemical characteristics of organic domains[J]. Environmental Science & Technology, 1997, 31: 2562-2569.
[34] 万莹. 土壤中典型抗生素与福的二元竞争吸附一解吸行为研究[D]. 天津: 南开大学, 2010.
[35] 吴盈秋, 夏鹏, 李远, 等. 镁改性硅藻土回收废水氮磷产物对水中Pb2+和Zn2+的去[J]. 环境科学, 2022, 43(2): 5667-5675.
[36] ZHU Y, HUANG B, ZHU Z, et al. Characterization, dissolution and solubility of the hydroxypyromorphite-hydroxyapatite solid solution [ (PbxCa1-x)5(PO4)3OH] at 25 degrees C and pH 2-9[J]. Geochemical Transactions, 2016, 17(2): 1-18.
[37] MONIKA K K, MATUSIK J, BAJDA T, et al. Fourier transform infrared spectroscopic study of hydroxylpyromorphite Pb10(PO4)6OH2-hydroxylmimetite Pb10(AsO4)6(OH)2 solid solution series[J]. Polyhedron, 2015, 99: 103-111. doi: 10.1016/j.poly.2015.07.002
[38] WESSELS J M, FORD W E, SZYMCZAK W, et al. The complexation of tetracycline and anhydrotetracycline with Mg2+ and Ca2+: a spectroscopic study[J]. Journal of Physical Chemistry B, 1998, 102: 9323-9331. doi: 10.1021/jp9824050
[39] 周世伟, 徐明岗. 磷酸盐修复重金属污染土壤的研究进展[J]. 生态学报, 2007, 27(7): 3043-3050. doi: 10.3321/j.issn:1000-0933.2007.07.046
[40] ELZAHABI M, YONG R N. pH influence on sorption characteristics of heavy metal in the vadose zone[J]. Engineering Geology, 2001, 60(1-4): 61-68. doi: 10.1016/S0013-7952(00)00089-2
[41] 孙晓铧, 黄益宗, 钟敏, 等. 沸石、磷矿粉和石灰对土壤铅锌化学形态和生物可给性的影响[J]. 环境化学, 2013, 32(9): 1693-1699. doi: 10.7524/j.issn.0254-6108.2013.09.014
[42] 孙丽娟, 段德超, 彭程, 等. 硫对土壤重金属形态转化及植物有效性的影响研究[J]. 应用生态学报, 2014, 25(7): 2141-2148. doi: 10.13287/j.1001-9332.2014.0139
[43] 张志昊, 陈杰, 夏鹏, 等. 沸石-鸟粪石复合材料对土壤中铅的稳定化作用[J]. 农业环境科学学报, 2016, 35(11): 2101-2106. doi: 10.11654/jaes.2016-0760
[44] 梁媛, 王晓春, 曹心德. 基于磷酸盐、碳酸盐和硅酸盐材料化学钝化修复重金属污染土壤的研究进展[J]. 环境化学, 2012, 31(1): 16-25.
[45] LIU Y X, BAO Y Y, ZHANG C, et al. The effect of aging on sequestration and bioaccessibility of oxytetracycline in soils[J]. Environmental Science and Pollution Research, 2015, 22: 10425-10433. doi: 10.1007/s11356-015-4190-7
[46] WANG T, LIU M Q, LI H X. Inoculation of phosphate-solubilizing bacteria Bacillus thuringiensis B1 increases available phosphorus and growth of peanut in acidic soil[J]. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 2014, 64(3): 252-259.
[47] 依艳丽, 周咏春, 张大庚, 等. 重金属 (Zn、Cd) 污染对土壤中速效磷的影响[J]. 土壤通报, 2009, 40(3): 668-672.
[48] 唐聪聪. 菌藻共生序批式泥膜系统脱氮除磷效能及作用机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
[49] LI Y, WANG X J, LI J, et al. Effects of struvite-humic acid loaded biochar/bentonite composite amendment on Zn (II) and antibiotic resistance genes in manure-soil[J]. Chemical Engineering Journal, 2019, 375: 122013. doi: 10.1016/j.cej.2019.122013
[50] HUERTA B, MARTI E, GROS M, et al. Exploring the links between antibiotic occurrence, antibiotic resistance, and bacterial communities in water supply reservoirs[J]. Science of the Total Environment, 2013, 456: 161-170.