[1] 王文龙,吴乾元,杜烨,等. 城市污水中新兴微量有机污染物控制目标与再生处理技术[J]. 环境科学研究, 2021, 34(7): 1672-1678. doi: 10.13198/j.issn.1001-6929.2020.09.15
[2] 胡洪营. 聚焦矛盾 精准施策 全面提升污水资源化利用水平[J]. 给水排水, 2021, 57(2): 1-3.
[3] 宫飞蓬,李杨,霍健. 超滤+臭氧工艺对再生水厂的应用[J]. 膜科学与技术, 2011, 31(5): 52-57. doi: 10.3969/j.issn.1007-8924.2011.05.010
[4] 张凯. 臭氧/陶瓷膜-活性炭耦合工艺处理再生水协同效能研究[D]. 北京: 清华大学, 2020.
[5] MANSAS C,MENDRET J,BROSILLON S,et al. Coupling catalytic ozonation and membrane separation:A review[J]. Separation and Purification Technology, 2020, 236: 116211-116230.
[6] PSALTOU S,ZOUBOULIS A. Catalytic ozonation and membrane contactors-a review concerning fouling occurrence and pollutant removal[J]. Water, 2020, 12(11): 2964-2951. doi: 10.3390/w12112964
[7] PRAKASH N,SETHI M. A review of innovative bond instruments for sustainable development in Asia[J]. International Journal of Innovation Science, 2022, 14(3/4): 630-647. doi: 10.1108/IJIS-10-2020-0213
[8] GUO Y,SONG Z,XU B,et al. A novel catalytic ceramic membrane fabricated with CuMn2O4 particles for emerging UV absorbers degradation from aqueous and membrane fouling elimination[J]. Journal of Hazardous Materials, 2018, 344: 1229-1239. doi: 10.1016/j.jhazmat.2017.11.044
[9] LEE W J,BAO Y,HU X,et al. Hybrid catalytic ozonation-membrane filtration process with CeOx and MnOx impregnated catalytic ceramic membranes for micropollutants degradation[J]. Chemical Engineering Journal, 2019, 378: 121670-121682. doi: 10.1016/j.cej.2019.05.031
[10] PARK H,KIM Y,AN B,et al. Characterization of natural organic matter treated by iron oxide nanoparticle incorporated ceramic membrane-ozonation process[J]. Water Research, 2012, 46(18): 5861-5870. doi: 10.1016/j.watres.2012.07.039
[11] BYUN S,DAVIES S H,Alpatova A L,et al. Mn oxide coated catalytic membranes for a hybrid ozonation–membrane filtration:Comparison of Ti,Fe and Mn oxide coated membranes for water quality[J]. Water Research, 2011, 45(1): 163-170. doi: 10.1016/j.watres.2010.08.031
[12] ZHANG J,GUO Q,WU W,et al. Preparation of Fe-MnOX/AC by high gravity method for heterogeneous catalytic ozonation of phenolic wastewater[J]. Chemical Engineering Science, 2022, 255: 117667-117672. doi: 10.1016/j.ces.2022.117667
[13] WANG T,DE W M,DE G J. CoFe2O4-peroxymonosulfate based catalytic UF and NF polymeric membranes for naproxen removal:The role of residence time[J]. Journal of Membrane Science, 2022, 646: 120209-120219. doi: 10.1016/j.memsci.2021.120209
[14] YAN P,CHEN Z,WANG S,et al. Catalytic ozonation of iohexol with α-Fe0.9Mn0.1OOH in water:Efficiency,degradation mechanism and toxicity evaluation[J]. Journal of Hazardous Materials, 2021, 402: 123574-123586. doi: 10.1016/j.jhazmat.2020.123574
[15] HE Y,WANG L,CHEN Z,et al. Novel catalytic ceramic membranes anchored with MnMe oxide and their catalytic ozonation performance towards atrazine degradation[J]. Journal of Membrane Science, 2022, 648: 120362-120375. doi: 10.1016/j.memsci.2022.120362
[16] COSTANZO S D,WATKINSON A J,MURBY E J,et al. Is there a risk associated with the insect repellent DEET (N,N-diethyl-m-toluamide) commonly found in aquatic environments?[J]. Science of the Total Environment, 2007, 384(1-3): 214-220. doi: 10.1016/j.scitotenv.2007.05.036
[17] GAO X,WANG X,LI J,et al. Aquatic life criteria derivation and ecological risk assessment of DEET in China[J]. Ecotoxicology and Environmental Safety, 2020, 188: 109881-109888. doi: 10.1016/j.ecoenv.2019.109881
[18] PILLARD D A,CORNELL J S,DUFRESNE D L,et al. Toxicity of benzotriazole and benzotriazole derivatives to three aquatic species[J]. Water Research, 2001, 35(2): 557-560. doi: 10.1016/S0043-1354(00)00268-2
[19] CHOI Y,LEE J H,KIM K,et al. Identification,quantification,and prioritization of new emerging pollutants in domestic and industrial effluents,Korea:Application of LC-HRMS based suspect and non-target screening[J]. Journal of Hazardous Materials, 2021, 402: 123706-123718. doi: 10.1016/j.jhazmat.2020.123706
[20] TIAN Z,WANG B,LIANG Y,et al. Enhancement on the ammonia oxidation capacity of ammonia-oxidizing archaeon originated from wastewater:utilizing low-density static magnetic field[J]. Frontiers of Environmental Science & Engineering, 2021, 15(5): 81-89.
[21] YU H,ANUMOL T,PARK M,et al. On-line sensor monitoring for chemical contaminant attenuation during UV/H2O2 advanced oxidation process[J]. Water Research, 2015, 81: 250-260. doi: 10.1016/j.watres.2015.05.064
[22] CHEN H,PENG C,WANG L,et al. Mechanically tough,healable hydrogels synergistically reinforced by UV-responsive crosslinker and metal coordination interaction for wound healing application[J]. Chemical Engineering Journal, 2021, 403: 126341-126351. doi: 10.1016/j.cej.2020.126341
[23] LI C,SUN W,LU Z,et al. Systematic evaluation of TiO2-GO-modified ceramic membranes for water treatment:Retention properties and fouling mechanisms[J]. Chemical Engineering Journal, 2019, 378: 122138-122150. doi: 10.1016/j.cej.2019.122138
[24] WANG Y,CHEN L,CAO H,et al. Role of oxygen vacancies and Mn sites in hierarchical Mn2O3/LaMnO3-delta perovskite composites for aqueous organic pollutants decontamination[J]. Applied Catalysis B:Environmental, 2019, 245: 546-554. doi: 10.1016/j.apcatb.2019.01.025
[25] MAILLER R,GASPERI J,COQUET Y,et al. Study of a large scale powdered activated carbon pilot:Removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents[J]. Water Research, 2015, 72: 315-330. doi: 10.1016/j.watres.2014.10.047
[26] 中国环境科学学会. 水回用指南 再生水中药品和个人护理品类微量污染物处理技术[M]. 北京: 中国环境科学学会, 2021.
[27] AGENCY U S E P. Drinking Water Standards and Health Advisories; EPA 822-F-18–001[M]. Office of Water. Washington, DC, USA, USEPA, 2018.
[28] 李先华. 己内酰胺废水色度来源分析及臭氧脱色研究[D]. 上海: 华东理工大学, 2014.
[29] 张云辉,陆杰,李海宁,等. 臭氧工艺在废水脱色中的应用[J]. 水处理技术, 2012, 38(11): 3-6. doi: 10.16796/j.cnki.1000-3770.2012.11.027