[1] SARMAH A K, MEYER M T, BOXALL A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere, 2006, 65(5): 725-759. doi: 10.1016/j.chemosphere.2006.03.026
[2] THIELE-BRUHN S. Pharmaceutical antibiotic compounds in soils–a review[J]. Journal of Plant Nutrition and Soil Science, 2003, 166(2): 145-167. doi: 10.1002/jpln.200390023
[3] LI Y W, WU X L, MO C H, et al. Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta area, Southern China[J]. Journal of Agricultural and Food Chemistry, 2011, 59(13): 7268-7276. doi: 10.1021/jf1047578
[4] MIGLIORE L, CIVITAREALE C, BRAMBILLA G, et al. Effects of sulphadimethoxine on cosmopolitan weeds (Amaranthus retroflexus L. , Plantago major L. and Rumex acetosella L. ) [J]. Agriculture, Ecosystems & Environment, 1997, 65(2): 163-168.
[5] 吴小莲, 向垒, 莫测辉, 等. 长期施用粪肥蔬菜基地蔬菜中典型抗生素的污染特征[J]. 环境科学, 2013, 34(6): 2442-2447. WU X L, XIANG L, MO C H, et al. Concentrations of antibiotics in vegetables from manure-mended farm[J]. Environmental Science, 2013, 34(6): 2442-2447 (in Chinese).
[6] HU X G, ZHOU Q X, LUO Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, Northern China[J]. Environmental Pollution, 2010, 158(9): 2992-2998. doi: 10.1016/j.envpol.2010.05.023
[7] 张世昌, 吴凌云. 福建省规模种植户4种主要农作物施肥现状调查与分析[J]. 福建农业科技, 2018(10): 36-39. ZHANG S C, WU L Y. Investigation and analysis on fertilization status of four main crops of large-scale planters in Fujian Province[J]. Fujian Agricultural Science and Technology, 2018(10): 36-39 (in Chinese).
[8] WU X L, XIANG L, YAN Q Y, et al. Distribution and risk assessment of quinolone antibiotics in the soils from organic vegetable farms of a subtropical city, Southern China[J]. Science of the Total Environment, 2014, 487: 399-406. doi: 10.1016/j.scitotenv.2014.04.015
[9] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
[10] 张小红, 陶红, 王亚娟, 等. 银川市农田土壤中四环素类抗生素的污染特征及生态风险评估[J]. 环境科学, 2021, 42(10): 4933-4941. ZHANG X H, TAO H, WANG Y J, et al. Pollution characteristics and risk assessment of tetracycline antibiotics in farmland soil in Yinchuan[J]. Environmental Science, 2021, 42(10): 4933-4941 (in Chinese).
[11] LI Y X, ZHANG X L, LI W, et al. The residues and environmental risks of multiple veterinary antibiotics in animal faeces[J]. Environmental Monitoring and Assessment, 2013, 185(3): 2211-2220. doi: 10.1007/s10661-012-2702-1
[12] PAN M, WONG C K C, CHU L M. Distribution of antibiotics in wastewater-irrigated soils and their accumulation in vegetable crops in the Pearl River Delta, Southern China[J]. Journal of Agricultural and Food Chemistry, 2014, 62(46): 11062-11069. doi: 10.1021/jf503850v
[13] BOXALL A B A. The environmental side effects of medication: how are human and veterinary medicines in soils and water bodies affecting human and environmental health?[J]. EMBO Journal, 2004, 5(12): 1110-1116. doi: 10.1038/sj.embor.7400307
[14] 厉文辉, 史亚利, 高立红, 等. 污灌区土壤中抗生素污染水平及分布特征研究 [C]//中国化学会第29届学术年会摘要集——第20分会: 环境与健康. 北京, 2014: 74. LI W H, SHI Y L, GAO L H, et al. Occurrence and distribution of antibiotics in soils from wastewater irrigated farmlands [C] // The 29th annual meeting of the Chinese chemical society. Abstracts of the 29th annual meeting of the Chinese Chemical Society. Beijing: the 29th annual meeting of the Chinese Chemical Society, 2014: 74 (in Chinese).
[15] 刘艳萍, 刘鸿雁, 吴龙华, 等. 贵阳市某蔬菜地养殖废水污灌土壤重金属、抗生素复合污染研究[J]. 环境科学学报, 2017, 37(3): 1074-1082. LIU Y P, LIU H Y, WU L H, et al. Co-contamination of heavy metals and antibiotics in soils under husbandry wastewater irrigation in Guiyang City[J]. Acta Scientiae Circumstantiae, 2017, 37(3): 1074-1082 (in Chinese).
[16] ZHAO L, DONG Y H, WANG H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China[J]. Science of the Total Environment, 2010, 408(5): 1069-1075. doi: 10.1016/j.scitotenv.2009.11.014
[17] 徐秋桐, 顾国平, 章明奎. 有机肥对土壤中抗生素降解的促进作用[J]. 浙江农业学报, 2015, 27(3): 417-422. XU Q T, GU G P, ZHANG M K. Promoting antibiotics degradation via application of organic fertilizers[J]. Acta Agriculturae Zhejiangensis, 2015, 27(3): 417-422 (in Chinese).
[18] ZHANG Y, HU S Q, ZHANG H C, et al. Degradation kinetics and mechanism of sulfadiazine and sulfamethoxazole in an agricultural soil system with manure application[J]. Science of the Total Environment, 2017, 607/608: 1348-1356. doi: 10.1016/j.scitotenv.2017.07.083
[19] 彭秋, 王卫中, 徐卫红. 重庆市畜禽粪便及菜田土壤中四环素类抗生素生态风险评价[J]. 环境科学, 2020, 41(10): 4757-4766. PENG Q, WANG W Z, XU W H. Ecological risk assessment of tetracycline antibiotics in livestock manure and vegetable soil of Chongqing[J]. Environmental Science, 2020, 41(10): 4757-4766 (in Chinese).
[20] 罗凯, 李文红, 章海波, 等. 南京典型设施菜地有机肥和土壤中四环素类抗生素的污染特征调查[J]. 土壤, 2014, 46(2): 330-338. LUO K, LI W H, ZHANG H B, et al. Pollution characteristics of tetracycline antibiotics in typical protected vegetable organic fertilizer of Nanjing city[J]. Soils, 2014, 46(2): 330-338 (in Chinese).
[21] MCEACHRAN A D, BLACKWELL B R, HANSON J D, et al. Antibiotics, bacteria, and antibiotic resistance genes: aerial transport from cattle feed yards via particulate matter[J]. Environmental Health Perspectives, 2015, 123(4): 337-343. doi: 10.1289/ehp.1408555
[22] 成玉婷, 吴小莲, 向垒, 等. 广州市典型有机蔬菜基地土壤中磺胺类抗生素污染特征及风险评价[J]. 中国环境科学, 2017, 37(3): 1154-1161. CHENG Y T, WU X L, XIANG L, et al. Distribution and risk assessment of sulfonamide antibiotics in soil from organic vegetable farms in Guangzhou[J]. China Environmental Science, 2017, 37(3): 1154-1161 (in Chinese).
[23] ZHANG H B, ZHOU Y, HUANG Y J, et al. Residues and risks of veterinary antibiotics in protected vegetable soils following application of different manures[J]. Chemosphere, 2016, 152: 229-237. doi: 10.1016/j.chemosphere.2016.02.111
[24] FANG H, HAN Y L, YIN Y M, et al. Variations in dissipation rate, microbial function and antibiotic resistance due to repeated introductions of manure containing sulfadiazine and chlortetracycline to soil[J]. Chemosphere, 2014, 96: 51-56. doi: 10.1016/j.chemosphere.2013.07.016
[25] PAN M, CHU L M. Leaching behavior of veterinary antibiotics in animal manure-applied soils[J]. Science of the Total Environment, 2017, 579: 466-473. doi: 10.1016/j.scitotenv.2016.11.072
[26] 提清清, 高增文, 季慧慧, 等. 抗生素在土壤中的吸附行为研究进展[J]. 土壤, 2017, 49(3): 437-445. TI Q Q, GAO Z W, JI H H, et al. Adsorption of antibiotics in soils: A review[J]. Soils, 2017, 49(3): 437-445 (in Chinese).
[27] 方林发, 叶苹苹, 方标, 等. 重庆开州区菜地土壤抗生素污染特征及潜在生态环境风险评估[J]. 环境科学, 2022, 43(11): 5244-5252. FANG L F, YE P P, FANG B, et al. Pollution characteristics and ecological risk assessment of antibiotics in vegetable field in Kaizhou, Chongqing[J]. Environmental Science, 2022, 43(11): 5244-5252 (in Chinese).
[28] TANG X, LOU C, WANG S, et al. Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils: Evidence from four field experiments in south of China [J]. Soil Biology and Biochemistry, 2015, 90: 179-187. doi: 10.1016/j.soilbio.2015.07.027
[29] TASHO R P, CHO J Y. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review[J]. Science of the Total Environment, 2016, 563/564: 366-376. doi: 10.1016/j.scitotenv.2016.04.140
[30] TOLLS J. Sorption of veterinary pharmaceuticals in soils: A review[J]. Environmental Science & Technology, 2001, 35(17): 3397-3406.
[31] WANG Q Q, BRADFORD S A, ZHENG W, et al. Sulfadimethoxine degradation kinetics in manure as affected by initial concentration, moisture, and temperature[J]. Journal of Environmental Quality, 2006, 35(6): 2162-2169. doi: 10.2134/jeq2006.0178
[32] 李彦文, 莫测辉, 赵娜, 等. 菜地土壤中磺胺类和四环素类抗生素污染特征研究[J]. 环境科学, 2009, 30(6): 1762-1766. doi: 10.3321/j.issn:0250-3301.2009.06.035 LI Y W, MO C H, ZHAO N, et al. Investigation of sulfonamides and tetracyclines antibiotics in soils from various vegetable fields[J]. Environmental Science, 2009, 30(6): 1762-1766 (in Chinese). doi: 10.3321/j.issn:0250-3301.2009.06.035
[33] 刘彩媚, 林泳欣, 谢晓仪, 等. 广州市城-郊梯度上典型蔬菜地土壤抗生素污染研究[J]. 广东农业科学, 2019, 46(6): 59-67. doi: 10.16768/j.issn.1004-874X.2019.06.009 LIU C M, LIN Y X, XIE X Y, et al. Study on antibiotic pollution in soils of typical vegetable fields along an urban-suburban gradient in Guangzhou[J]. Guangdong Agricultural Sciences, 2019, 46(6): 59-67 (in Chinese). doi: 10.16768/j.issn.1004-874X.2019.06.009
[34] 赵娜. 珠三角地区典型菜地土壤抗生素污染特征研究 [D]. 广州: 暨南大学, 2007. ZHAO N. The study of antibiotics in the soil of typical vegetable fields in pearl river delta [D]. Guangzhou: Jinan University, 2007 (in Chinese).
[35] 邰义萍. 珠三角地区蔬菜基地土壤中典型抗生素的污染特征研究 [D]. 广州: 暨南大学, 2010. TAI Y P. The study on pollution characteristics of typical antibiotics in soil from vegetable fields of pearl river delta area [D]. Guangzhou: Jinan University, 2010 (in Chinese).
[36] 刘艳萍. 养殖废水污染土壤抗生素、重金属复合污染及植物修复 [D]. 贵阳: 贵州大学, 2016. LIU Y P. Co-contamination of heavy metals and antibiotics in soils under husbandry wastewater irrigation and phytoremediation [D]. Guiyang: Guizhou University, 2016 (in Chinese).
[37] 徐晨. 三峡库区水体、土壤和沉积物中抗生素与抗生素抗性基因的污染特征 [D]. 武汉: 中国科学院武汉植物园, 2017. XU C. Contamination of antibiotic and antibiotic resistance genes in water, soil and sediment of the three gorges reservoir [D]. Wuhan: Wuhan Botanical Garden, Chinese Academy of Sciences, 2017 (in Chinese).
[38] CHEN H Y, ZHENG W F, SHEN X M, et al. Occurrence, distribution, and ecological risk assessment of antibiotics in different environmental media in Anqing, Anhui Province, China[J]. International Journal of Environmental Research and Public Health, 2021, 18(15): 8112. doi: 10.3390/ijerph18158112
[39] 陈海燕, 花日茂, 李学德, 等. 不同类型菜地土壤中3种磺胺类抗生素污染特征研究[J]. 安徽农业科学, 2011, 39(23): 14224-14226, 14229. CHEN H Y, HUA R M, LI X D, et al. Study on pollution characteristic of three sulfonamides antibiotics in different soils of vegetable plot[J]. Journal of Anhui Agricultural Sciences, 2011, 39(23): 14224-14226, 14229 (in Chinese).
[40] PAN Z, YANG S D, ZHAO L X, et al. Temporal and spatial variability of antibiotics in agricultural soils from Huang-Huai-Hai Plain, Northern China[J]. Chemosphere, 2021, 272: 129803. doi: 10.1016/j.chemosphere.2021.129803
[41] 赵方凯, 陈利顶, 杨磊, 等. 长三角典型城郊不同土地利用土壤抗生素组成及分布特征[J]. 环境科学, 2017, 38(12): 5237-5246. ZHAO F K, CHEN L D, YANG L, et al. Composition and distribution of antibiotics in soils with different land use types in a typical peri-urban area of the Yangtze River Delta[J]. Environmental Science, 2017, 38(12): 5237-5246 (in Chinese).
[42] 李文. 长三角农田土壤中crAssphage与抗生素抗性基因共存关系研究 [D]. 杭州: 浙江大学, 2021. LI W. Co-occurrence of crAssphage and antibiotic resistance genes in agricultural soils of the Yangtze River delta [D]. Hangzhou: Zhejiang University, 2021 (in Chinese).
[43] 赵祥. 施用粪肥的设施菜地土壤中抗生素及抗性基因多样性及丰度的研究 [D]. 泰安: 山东农业大学, 2017. ZHAO X. Diversity and abundance of antibiotics and ARGs in vegetable soil with manure application [D]. Taian: Shandong Agricultural University, 2017 (in Chinese).
[44] 尹春艳, 骆永明, 滕应, 等. 典型设施菜地土壤抗生素污染特征与积累规律研究[J]. 环境科学, 2012, 33(8): 2810-2816. YIN C Y, LUO Y M, TENG Y, et al. Pollution characteristics and accumulation of antibiotics in typical protected vegetable soils[J]. Environmental Science, 2012, 33(8): 2810-2816 (in Chinese).
[45] 张凤丽. 某冶炼厂周围农田土壤中抗生素抗性基因分布及其影响因素 [D]. 郑州: 郑州大学, 2018. ZHANG F L. The distribution of antibiotic resistance genes and its influencing factors in agricultural soil nearby a smelting plant [D]. Zhengzhou: Zhengzhou University, 2018 (in Chinese).
[46] 王佳佳. 北京地区蔬菜土壤抗生素抗性基因分布特征的研究 [D]. 吉林: 东北电力大学, 2016. WANG J J. Research on distribution of antibiotic resistance genes in vegetable soils in Beijing [D]. Jilin: Northeast Dianli University, 2016 (in Chinese).
[47] LI C, CHEN J Y, WANG J H, et al. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment[J]. Science of the Total Environment, 2015, 521/522: 101-107. doi: 10.1016/j.scitotenv.2015.03.070
[48] 赵鑫宇, 剧泽佳, 陈慧, 等. 石家庄市土壤中喹诺酮类抗生素空间分布特征及其与微生物群落相关性[J]. 环境科学, 2022, 43(9): 4684-4696. ZHAO X Y, JU Z J, CHEN H, et al. Spatial distribution of quinolone antibiotics and its correlation relationship with microbial community in soil of Shijiazhuang city[J]. Environmental Science, 2022, 43(9): 4684-4696 (in Chinese).
[49] 李国秀, 崔利辉, 刘颖沙. 陕西省杨凌区蔬菜基地土壤中抗生素污染评价[J]. 农业工程, 2021, 11(7): 41-46. LI G X, CUI L H, LIU Y S. Evaluation of antibiotic pollution in soil of vegetable base in Yangling district, Shaanxi Province[J]. Agricultural Engineering, 2021, 11(7): 41-46 (in Chinese).
[50] 谢超然. 干旱区设施菜地土壤磺胺类抗生素污染特征及吸附行为初步研究 [D]. 兰州: 兰州大学, 2017. XIE C R. Preliminary study on sulfonamides pollution characteristics and adsorption behavior in arid oasis soil [D]. Lanzhou: Lanzhou University, 2017 (in Chinese).
[51] 郎朗, 狄静波, 王戈, 等. 哈尔滨市蔬菜基地四环素类抗生素的污染现状[J]. 环境科学与技术, 2018, 41(8): 153-159. LANG L, DI J B, WANG G, et al. Study on the tetracycline antibiotics pollution in soil of vegetable bases in Harbin[J]. Environmental Science & Technology, 2018, 41(8): 153-159 (in Chinese).
[52] WEI R C, HE T, ZHANG S X, et al. Occurrence of seventeen veterinary antibiotics and resistant bacterias in manure-fertilized vegetable farm soil in four provinces of China[J]. Chemosphere, 2019, 215: 234-240. doi: 10.1016/j.chemosphere.2018.09.152
[53] MIGLIORE L, COZZOLINO S, FIORI M. Phytotoxicity to and uptake of enrofloxacin in crop plants[J]. Chemosphere, 2003, 52(7): 1233-1244. doi: 10.1016/S0045-6535(03)00272-8
[54] 丁丹, 黄晓依, 顾静仪, 等. 畜禽粪肥还田四环素类抗生素(TCs)在土壤-蔬菜系统的分布特征及风险评估 [J]. 环境科学,2023, 44(8): 4440-4447. DING D, HUANG X Y, GU J Y, et al. Distribution Characteristics and Risk Assessment of Tetracycline Antibiotics (TCs) in Soil-Vegetable System with Soil Fertilized with Animal Manure [J]. Environmental Science, 2023, 44(8): 4440-4447(in Chinese) .
[55] KANG D H, GUPTA S, ROSEN C, et al. Antibiotic uptake by vegetable crops from manure-applied soils[J]. Journal of Agricultural and Food Chemistry, 2013, 61(42): 9992-10001. doi: 10.1021/jf404045m
[56] LI X W, XIE Y F, LI C L, et al. Investigation of residual fluoroquinolones in a soil–vegetable system in an intensive vegetable cultivation area in Northern China[J]. Science of the Total Environment, 2014, 468/469: 258-264. doi: 10.1016/j.scitotenv.2013.08.057
[57] BOXALL A B A, JOHNSON P, SMITH E J, et al. Uptake of veterinary medicines from soils into plants[J]. Journal of Agricultural and Food Chemistry, 2006, 54(6): 2288-2297. doi: 10.1021/jf053041t
[58] EGGEN T, ASP T N, GRAVE K, et al. Uptake and translocation of metformin, ciprofloxacin and narasin in forage- and crop plants[J]. Chemosphere, 2011, 85(1): 26-33. doi: 10.1016/j.chemosphere.2011.06.041
[59] TANOUE R, SATO Y, MOTOYAMA M, et al. Plant uptake of pharmaceutical chemicals detected in recycled organic manure and reclaimed wastewater[J]. Journal of Agricultural and Food Chemistry, 2012, 60(41): 10203-10211. doi: 10.1021/jf303142t
[60] MIGLIORE L, CIVITAREALE C, COZZOLINO S, et al. Laboratory models to evaluate phytotoxicity of sulphadimethoxine on terrestrial plants[J]. Chemosphere, 1998, 37(14/15): 2957-2961.
[61] SIMONICH S L, HITES R A. Organic pollutant accumulation in vegetation[J]. Environmental Science & Technology, 1995, 29(12): 2905-2914.
[62] PAN M, CHU L M. Fate of antibiotics in soil and their uptake by edible crops[J]. Science of the Total Environment, 2017, 599/600: 500-512. doi: 10.1016/j.scitotenv.2017.04.214
[63] MILLER E L, NASON S L, KARTHIKEYAN K G, et al. Root uptake of pharmaceuticals and personal care product ingredients[J]. Environmental Science & Technology, 2016, 50(2): 525-541.
[64] MIGLIORE L, BRAMBILLA G, COZZOLINO S, et al. Effect on plants of sulphadimethoxine used in intensive farming (Panicum miliaceum, Pisum sativum and Zea mays) [J]. Agriculture, Ecosystems & Environment, 1995, 52(2/3): 103-110.
[65] LILLENBERG M, LITVIN S V, NEI L, et al. Enrofloxacin and ciprofloxacin uptake by plants from soil[J]. Agronomy Research, 2010, 8(1): 807-814.
[66] 汪勇, 林先贵, 王一明, 等. 长期施用粪肥对农田土壤中细菌四环素抗性水平的影响[J]. 安徽农业科学, 2008, 36(14): 5944-5945, 5947. doi: 10.3969/j.issn.0517-6611.2008.14.108 WANG Y, LIN X G, WANG Y M, et al. Effects of long-term application of manure on bacteria resistance level to tetracycline in farmland soil[J]. Journal of Anhui Agricultural Sciences, 2008, 36(14): 5944-5945, 5947 (in Chinese). doi: 10.3969/j.issn.0517-6611.2008.14.108
[67] HEUER H, SOLEHATI Q, ZIMMERLING U, et al. Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine[J]. Applied and Environmental Microbiology, 2011, 77(7): 2527-2530. doi: 10.1128/AEM.02577-10
[68] BATCHELDER A R. Chlortetracycline and oxytetracycline effects on plant growth and development in soil systems[J]. Journal of Environmental Quality, 1982, 11(4): 675-678.
[69] McMANUS P S, STOCKWELL V O, SUNDIN G W, et al. Antibiotic use in plant agriculture[J]. Annual Review of Phytopathology, 2002, 40: 443-465. doi: 10.1146/annurev.phyto.40.120301.093927
[70] 金彩霞, 陈秋颖, 刘军军, 等. 两种常用兽药对作物发芽的生态毒性效应[J]. 环境科学学报, 2009, 29(3): 619-625. JIN C X, CHEN Q Y, LIU J J, et al. The Eco-toxicological effect of two common veterinary drugs on crop germination[J]. Acta Scientiae Circumstantiae, 2009, 29(3): 619-625 (in Chinese).
[71] BELLINO A, LOFRANO G, CAROTENUTO M, et al. Antibiotic effects on seed germination and root development of tomato (Solanum lycopersicum L. )[J]. Ecotoxicology and Environmental Safety, 2018, 148: 135-141. doi: 10.1016/j.ecoenv.2017.10.006
[72] AN J, ZHOU Q X, SUN F H, et al. Ecotoxicological effects of paracetamol on seed germination and seedling development of wheat (Triticum aestivum L. )[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 751-757.
[73] PAN M, CHU L M. Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops[J]. Ecotoxicology and Environmental Safety, 2016, 126: 228-237. doi: 10.1016/j.ecoenv.2015.12.027
[74] ZHAO F K, YANG L, LI G, et al. Veterinary antibiotics can reduce crop yields by modifying soil bacterial community and earthworm population in agro-ecosystems[J]. Science of the Total Environment, 2022, 808: 152056. doi: 10.1016/j.scitotenv.2021.152056
[75] BRAIN R A, HANSON M L, SOLOMON K R, et al. Aquatic plants exposed to pharmaceuticals: Effects and risks[J]. Reviews of Environmental Contamination and Toxicology, 2008, 192: 67-115.
[76] KÜMMERER K. Antibiotics in the aquatic environment–A review–Part I[J]. Chemosphere, 2009, 75(4): 417-434. doi: 10.1016/j.chemosphere.2008.11.086
[77] OPRIŞ O, SORAN M L, COMAN V, et al. Determination of some frequently used antibiotics in waste waters using solid phase extraction followed by high performance liquid chromatography with diode array and mass spectrometry detection[J]. Central European Journal of Chemistry, 2013, 11(8): 1343-1351.
[78] ARISTILDE L, MELIS A, SPOSITO G. Inhibition of photosynthesis by a fluoroquinolone antibiotic[J]. Environmental Science &Technology, 2010, 44(4): 1444-1450.
[79] BASSET G J C, QUINLIVAN E P, GREGORY J F, et al. Folate synthesis and metabolism in plants and prospects for biofortification[J]. Crop Science, 2005, 45(2): 449-453. doi: 10.2135/cropsci2005.0449
[80] BOXALL A B A, BLACKWELL P, CAVALLO R, et al. The sorption and transport of a sulphonamide antibiotic in soil systems[J]. Toxicology Letters, 2002, 131(1/2): 19-28.
[81] BAGUER A J, JENSEN J, KROGH P H. Effects of the antibiotics oxytetracycline and tylosin on soil fauna[J]. Chemosphere, 2000, 40(7): 751-757. doi: 10.1016/S0045-6535(99)00449-X
[82] LI Y S, HU Y X, AI X J, et al. Acute and sub-acute effects of enrofloxacin on the earthworm species Eisenia fetida in an artificial soil substrate[J]. European Journal of Soil Biology, 2015, 66: 19-23. doi: 10.1016/j.ejsobi.2014.11.004
[83] ZHU D, AN X L, CHEN Q L, et al. Antibiotics disturb the microbiome and increase the incidence of resistance genes in the gut of a common soil collembolan[J]. Environmental Science & Technology, 2018, 52(5): 3081-3090.
[84] 李进. 跳虫(弹尾纲)不同生物水平特征对农田重金属和抗生素类污染响应的毒理学研究 [D]. 上海: 华东师范大学, 2019. LI J. Toxicological study on response of different biological level characteristics of collembolan(Collembola) to heavy metals in farmland and antibiotics pollution [D]. Shanghai: East China Normal University, 2019 (in Chinese).
[85] DONG L X, GAO J, XIE X J, et al. DNA damage and biochemical toxicity of antibiotics in soil on the earthworm Eisenia fetida[J]. Chemosphere, 2012, 89(1): 44-51. doi: 10.1016/j.chemosphere.2012.04.010
[86] WANG C R, RONG H, LIU H T, et al. Detoxification mechanisms, defense responses, and toxicity threshold in the earthworm Eisenia foetida exposed to ciprofloxacin-polluted soils[J]. Science of the Total Environment, 2018, 612: 442-449. doi: 10.1016/j.scitotenv.2017.08.120
[87] MITTLER R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405-410. doi: 10.1016/S1360-1385(02)02312-9
[88] FIERER N. Embracing the unknown: Disentangling the complexities of the soil microbiome[J]. Nature Reviews Microbiology, 2017, 15(10): 579-590. doi: 10.1038/nrmicro.2017.87
[89] HALLING-SØRENSEN B, NORS NIELSEN S, LANZKY P F, et al. Occurrence, fate and effects of pharmaceutical substances in the environment- A review[J]. Chemosphere, 1998, 36(2): 357-393. doi: 10.1016/S0045-6535(97)00354-8
[90] JJEMBA P K. The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: A review [J]. Agriculture, Ecosystems & Environment, 2002, 93(1/2/3): 267-278.
[91] GIRARDI C, GREVE J, LAMSHÖFT M, et al. Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities[J]. Journal of Hazardous Materials, 2011, 198: 22-30. doi: 10.1016/j.jhazmat.2011.10.004
[92] VACLAVIK E, HALLING-SØRENSEN B, INGERSLEV F. Evaluation of manometric respiration tests to assess the effects of veterinary antibiotics in soil[J]. Chemosphere, 2004, 56(7): 667-676. doi: 10.1016/j.chemosphere.2004.02.018
[93] CYCOŃ M, MROZIK A, PIOTROWSKA-SEGET Z. Antibiotics in the soil environment-degradation and their impact on microbial activity and diversity[J]. Frontiers in Microbiology, 2019, 10: 338. doi: 10.3389/fmicb.2019.00338
[94] HAMMESFAHR U, HEUER H, MANZKE B, et al. Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils[J]. Soil Biology and Biochemistry, 2008, 40(7): 1583-1591. doi: 10.1016/j.soilbio.2008.01.010
[95] FRANCIS C A, ROBERTS K J, BEMAN J M, et al. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(41): 14683-14688.
[96] LEININGER S, URICH T, SCHLOTER M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006, 442(7104): 806-809. doi: 10.1038/nature04983
[97] SCHAUSS K, FOCKS A, LEININGER S, et al. Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils[J]. Environmental Microbiology, 2009, 11(2): 446-456. doi: 10.1111/j.1462-2920.2008.01783.x
[98] RADL V, KINDLER R, WELZL G, et al. Drying and rewetting events change the response pattern of nitrifiers but not of denitrifiers to the application of manure containing antibiotic in soil[J]. Applied Soil Ecology, 2015, 95: 99-106. doi: 10.1016/j.apsoil.2015.06.016
[99] LI J J, YANG H Z, QIN K N, et al. Effect of pig manure-derived sulfadiazine on species distribution and bioactivities of soil ammonia-oxidizing microorganisms after fertilization[J]. Journal of Hazardous Materials, 2022, 423: 126994. doi: 10.1016/j.jhazmat.2021.126994
[100] HUND-RINKE K, SIMON M, LUKOW T. Effects of tetracycline on the soil microflora: Function, diversity, resistance[J]. Journal of Soils and Sediments, 2004, 4(1): 11-16. doi: 10.1007/BF02990823
[101] DING G C, RADL V, SCHLOTER-HAI B, et al. Dynamics of soil bacterial communities in response to repeated application of manure containing sulfadiazine[J]. PLoS One, 2014, 9(3): e92958. doi: 10.1371/journal.pone.0092958
[102] ZHANG Y, CHEN M L, BAO C X, et al. Application of pig manure compost with different biochar modifies the antibiotic resistome and bacterial community in agriculture soil [J]. Water, Air, & Soil Pollution, 2022, 233(4): 108.
[103] LIU F, WU J S, YING G G, et al. Changes in functional diversity of soil microbial community with addition of antibiotics sulfamethoxazole and chlortetracycline[J]. Applied Microbiology and Biotechnology, 2012, 95(6): 1615-1623. doi: 10.1007/s00253-011-3831-0
[104] LIU A J, CAO H S, YANG Y, et al. Combinational effects of sulfomethoxazole and copper on soil microbial community and function[J]. Environmental Science and Pollution Research, 2016, 23(5): 4235-4241. doi: 10.1007/s11356-015-4892-x
[105] 刘伟, 王慧, 陈小军, 等. 抗生素在环境中降解的研究进展[J]. 动物医学进展, 2009, 30(3): 89-94. doi: 10.3969/j.issn.1007-5038.2009.03.022 LIU W, WANG H, CHEN X J, et al. Progress on degradation of antibiotics in environment[J]. Progress in Veterinary Medicine, 2009, 30(3): 89-94 (in Chinese). doi: 10.3969/j.issn.1007-5038.2009.03.022
[106] LIU F, YING G G, TAO R, et al. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities[J]. Environmental Pollution, 2009, 157(5): 1636-1642. doi: 10.1016/j.envpol.2008.12.021
[107] WEPKING C, AVERA B, BADGLEY B, et al. Exposure to dairy manure leads to greater antibiotic resistance and increased mass-specific respiration in soil microbial communities[J]. Proceedings of the Royal Society B: Biological Sciences, 2017, 284(1851): 20162233. doi: 10.1098/rspb.2016.2233
[108] MARX M C, KANDELER E, WOOD M, et al. Exploring the enzymatic landscape: Distribution and kinetics of hydrolytic enzymes in soil particle-size fractions[J]. Soil Biology and Biochemistry, 2005, 37(1): 35-48. doi: 10.1016/j.soilbio.2004.05.024
[109] DANTAS G, SOMMER M O A, OLUWASEGUN R D, et al. Bacteria subsisting on antibiotics[J]. Science, 2008, 320(5872): 100-103. doi: 10.1126/science.1155157
[110] BOLEAS S, ALONSO C, PRO J, et al. Toxicity of the antimicrobial oxytetracycline to soil organisms in a multi-species-soil system (MS·3) and influence of manure co-addition[J]. Journal of Hazardous Materials, 2005, 122(3): 233-241. doi: 10.1016/j.jhazmat.2005.03.003
[111] KONG W D, ZHU Y G, LIANG Y C, et al. Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L. )[J]. Environmental Pollution, 2007, 147(1): 187-193. doi: 10.1016/j.envpol.2006.08.016
[112] DEVRIES S L, ZHANG P F. Antibiotics and the terrestrial nitrogen cycle: A review[J]. Current Pollution Reports, 2016, 2(1): 51-67. doi: 10.1007/s40726-016-0027-3
[113] MA T T, PAN X, CHEN L K, et al. Effects of different concentrations and application frequencies of oxytetracycline on soil enzyme activities and microbial community diversity[J]. European Journal of Soil Biology, 2016, 76: 53-60. doi: 10.1016/j.ejsobi.2016.07.004
[114] CUI H, WANG S P, FU J, et al. Influence of ciprofloxacin on microbial community structure and function in soils[J]. Biology and Fertility of Soils, 2014, 50(6): 939-947. doi: 10.1007/s00374-014-0914-y
[115] YANG J F, YING G G, LIU S, et al. Biological degradation and microbial function effect of norfloxacin in a soil under different conditions[J]. Journal of Environmental Science and Health Part B Pesticides Food Contaminants and Agricultural Wastes, 2012, 47(4): 288-295.
[116] DEVRIES S L, LOVING M, LI X Q, et al. The effect of ultralow-dose antibiotics exposure on soil nitrate and N2O flux[J]. Scientific Reports, 2015, 5(1): 16818. doi: 10.1038/srep16818
[117] MOLAEI A, LAKZIAN A, HAGHNIA G, et al. Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: An incubation study[J]. PLoS One, 2017, 12(7): e0180663. doi: 10.1371/journal.pone.0180663
[118] CONKLE J L, WHITE J R. An initial screening of antibiotic effects on microbial respiration in wetland soils[J]. Journal of Environmental Science and Health, Part A, 2012, 47(10): 1381-1390. doi: 10.1080/10934529.2012.672315