[1] ZHANG W H, WEI C H, CHAI X S, et al. The behaviors and fate of polycyclic aromatic hydrocarbons (PAHs) in a coking wastewater treatment plant[J]. Chemosphere, 2012, 88(2): 174-182. doi: 10.1016/j.chemosphere.2012.02.076
[2] FEI Y H, ZHAO D, LIU Y, et al. Feasibility of sewage sludge derived hydrochars for agricultural application: Nutrients (N, P, K) and potentially toxic elements (Zn, Cu, Pb, Ni, Cd)[J]. Chemosphere, 2019, 236: 124841. doi: 10.1016/j.chemosphere.2019.124841
[3] ZHANG F Z, WU K Y, ZHOU H T, et al. Ozonation of aqueous phenol catalyzed by biochar produced from sludge obtained in the treatment of coking wastewater[J]. Journal of Environmental Management, 2018, 224: 376-386. doi: 10.1016/j.jenvman.2018.07.038
[4] 赵迎新, 麻泽浩, 杨知凡, 等. 污泥生物炭催化高级氧化过程进展[J]. 化工进展, 2021, 40(7): 3984-3994. doi: 10.16085/j.issn.1000-6613.2020-1658 ZHAO Y X, MA Z H, YANG Z F, et al. Progress of advanced oxidation process catalyzed by sludge biochar[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3984-3994 (in Chinese). doi: 10.16085/j.issn.1000-6613.2020-1658
[5] TU Y T, XIONG Y, TIAN S H, et al. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts[J]. Journal of Hazardous Materials, 2014, 276: 88-96. doi: 10.1016/j.jhazmat.2014.05.024
[6] YU Y, HUANG F, HE Y D, et al. Heterogeneous Fenton-like degradation of ofloxacin over sludge derived carbon as catalysts: Mechanism and performance[J]. Science of the Total Environment, 2019, 654: 942-947. doi: 10.1016/j.scitotenv.2018.11.156
[7] GU L, ZHU N W, ZHOU P. Preparation of sludge derived magnetic porous carbon and their application in Fenton-like degradation of 1-diazo-2-naphthol-4-sulfonic acid[J]. Bioresource Technology, 2012, 118: 638-642. doi: 10.1016/j.biortech.2012.05.102
[8] CHEN Y D, HO S H, WANG D W, et al. Lead removal by a magnetic biochar derived from persulfate-ZVI treated sludge together with one-pot pyrolysis[J]. Bioresource Technology, 2018, 247: 463-470. doi: 10.1016/j.biortech.2017.09.125
[9] YU L, LIU Y K, WEI H Z. A review: Preparation of sludge derived carbons and their performance in wastewater treatment[J]. Desalination and Water Treatment, 2020, 201: 169-182. doi: 10.5004/dwt.2020.26146
[10] FAN S S, WANG Y, WANG Z, et al. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism[J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 601-611. doi: 10.1016/j.jece.2016.12.019
[11] YU Y, WEI H Z, YU L, et al. Catalytic wet air oxidation of m-cresol over a surface-modified sewage sludge-derived carbonaceous catalyst[J]. Catalysis Science & Technology, 2016, 6(4): 1085-1093.
[12] TAO S Y, LIANG S, CHEN Y, et al. Enhanced sludge dewaterability with sludge-derived biochar activating hydrogen peroxide: Synergism of Fe and Al elements in biochar[J]. Water Research, 2020, 182: 115927. doi: 10.1016/j.watres.2020.115927
[13] GAN Q, HOU H J, LIANG S, et al. Sludge-derived biochar with multivalent iron as an efficient Fenton catalyst for degradation of 4-Chlorophenol[J]. Science of the Total Environment, 2020, 725: 138299. doi: 10.1016/j.scitotenv.2020.138299
[14] YANG Y Q, CUI M H, REN Y G, et al. Towards understanding the mechanism of heavy metals immobilization in biochar derived from Co-pyrolysis of sawdust and sewage sludge[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(4): 489-496. doi: 10.1007/s00128-020-02801-4
[15] DAI H W, XU S Y, CHEN J X, et al. Oxalate enhanced degradation of Orange II in heterogeneous UV-Fenton system catalyzed by Fe3O4@γ-Fe2O3 composite[J]. Chemosphere, 2018, 199: 147-153. doi: 10.1016/j.chemosphere.2018.02.016
[16] TIAN S Q, LIU Y L, JIA L R, et al. Insight into the oxidation of phenolic pollutants by enhanced permanganate with biochar: The role of high-valent manganese intermediate species[J]. Journal of Hazardous Materials, 2022, 430: 128460. doi: 10.1016/j.jhazmat.2022.128460
[17] WANG S Z, WANG J L. Kinetics of PMS activation by graphene oxide and biochar[J]. Chemosphere, 2020, 239: 124812. doi: 10.1016/j.chemosphere.2019.124812
[18] ZHOU J H, SUI Z J, ZHU J, et al. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon, 2007, 45(4): 785-796. doi: 10.1016/j.carbon.2006.11.019
[19] CHEN X N, WANG X H, FANG D. A review on C1s XPS-spectra for some kinds of carbon materials[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2020, 28(12): 1048-1058. doi: 10.1080/1536383X.2020.1794851
[20] PI Z J, LI X M, WANG D B, et al. Persulfate activation by oxidation biochar supported magnetite particles for tetracycline removal: Performance and degradation pathway[J]. Journal of Cleaner Production, 2019, 235: 1103-1115. doi: 10.1016/j.jclepro.2019.07.037
[21] 余丽, 刘允康, 卫皇曌, 等. 酸改性颗粒污泥炭催化降解左氧氟沙星机制[J]. 中国环境科学, 2021, 41(10): 4695-4702. doi: 10.19674/j.cnki.issn1000-6923.2021.0354 YU L, LIU Y K, WEI H Z, et al. Mechanism of the catalytic degradation of levofloxacin by acid-modified granular sludge carbons[J]. China Environmental Science, 2021, 41(10): 4695-4702 (in Chinese). doi: 10.19674/j.cnki.issn1000-6923.2021.0354
[22] NIE X, LI G Y, LI S S, et al. Highly efficient adsorption and catalytic degradation of ciprofloxacin by a novel heterogeneous Fenton catalyst of hexapod-like pyrite nanosheets mineral clusters[J]. Applied Catalysis B: Environmental, 2022, 300: 120734. doi: 10.1016/j.apcatb.2021.120734
[23] SUN C, ZHOU R, E J, et al. Ascorbic acid-coated Fe3O4 nanoparticles as a novel heterogeneous catalyst of persulfate for improving the degradation of 2, 4-dichlorophenol[J]. RSC Advances, 2016, 6(13): 10633-10640. doi: 10.1039/C5RA22491H
[24] YU L, WANG L, LIU Y K, et al. Pyrolyzed carbon derived from red soil as an efficient catalyst for cephalexin removal[J]. Chemosphere, 2021, 277: 130339. doi: 10.1016/j.chemosphere.2021.130339
[25] YAO C X, JIN C Y, WANG S Z, et al. Analysis of the degradation of m-cresol with Fe/AC in catalytic wet peroxide oxidation enhanced by swirl flow[J]. Chemosphere, 2022, 298: 134356. doi: 10.1016/j.chemosphere.2022.134356
[26] WEN H F, GU L, YU H X, et al. Radical assisted iron impregnation on preparing sewage sludge derived Fe/carbon as highly stable catalyst for heterogeneous Fenton reaction[J]. Chemical Engineering Journal, 2018, 352: 837-846. doi: 10.1016/j.cej.2018.07.106
[27] DEVI P, SAROHA A K. Utilization of sludge based adsorbents for the removal of various pollutants: A review[J]. Science of the Total Environment, 2017, 578: 16-33. doi: 10.1016/j.scitotenv.2016.10.220
[28] SMITH K M, FOWLER G D, PULLKET S, et al. Sewage sludge-based adsorbents: A review of their production, properties and use in water treatment applications[J]. Water Research, 2009, 43(10): 2569-2594. doi: 10.1016/j.watres.2009.02.038
[29] 刘宇程, 杨冰, 李沁蔓, 等. Cl-和pH对高级氧化工艺去除含盐废水中有机物的影响及机理[J]. 环境工程学报, 2021, 15(5): 1487-1499. LIU Y C, YANG B, LI Q M, et al. Effects and mechanism of Cl- and pH on organic matter removal in salt-containing wastewater treatment by advanced oxidation processes[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1487-1499 (in Chinese).
[30] 刘屹. NH2OH/Fe2+/PMS体系对间甲酚的降解效能及机理研究[D]. 太原: 太原理工大学, 2019. LIU Y. Research on the degradation efficiency and mechanism of M-cresol by NH2OH/Fe2+/PMS system[D]. Taiyuan: Taiyuan University of Technology, 2019 (in Chinese).