[1] |
刘文君, 王小𠇔, 王占生. 饮用水水质标准的发展: 从卫生、安全到健康的理念[J]. 给水排水, 2017, 53(10): 1-3, 61. doi: 10.3969/j.issn.1002-8471.2017.10.001
LIU W J, WANG X T, WANG Z S. Development of drinking water quality standards: From hygiene, safety to health concept[J]. Water & Wastewater Engineering, 2017, 53(10): 1-3, 61 (in Chinese). doi: 10.3969/j.issn.1002-8471.2017.10.001
|
[2] |
LEAD J R, WILKINSON K J. Aquatic colloids and nanoparticles: Current knowledge and future trends[J]. Environmental Chemistry, 2006, 3(3): 159. doi: 10.1071/EN06025
|
[3] |
HONEYMAN B D, SANTSCHI P H. Coupling adsorption and particle aggregation: Laboratory studies of “colloidal pumping” using iron-59-labeled hematite[J]. Environmental Science & Technology, 1991, 25(10): 1739-1747.
|
[4] |
LU S, ZHANG G. Recent advances on inactivation of waterborne pathogenic microorganisms by (photo) electrochemical oxidation processes: Design and application strategies[J]. Journal of Hazardous Materials, 2022, 431: 128619. doi: 10.1016/j.jhazmat.2022.128619
|
[5] |
SONG P P, YANG Z H, ZENG G M, et al. Electrocoagulation treatment of arsenic in wastewaters: A comprehensive review[J]. Chemical Engineering Journal, 2017, 317: 707-725. doi: 10.1016/j.cej.2017.02.086
|
[6] |
CHELLAM S, SARI M A. Aluminum electrocoagulation as pretreatment during microfiltration of surface water containing NOM: A review of fouling, NOM, DBP, and virus control[J]. Journal of Hazardous Materials, 2016, 304: 490-501. doi: 10.1016/j.jhazmat.2015.10.054
|
[7] |
IBHADON A, FITZPATRICK P. Heterogeneous photocatalysis: Recent advances and applications[J]. Catalysts, 2013, 3(1): 189-218. doi: 10.3390/catal3010189
|
[8] |
MANSAS C, MENDRET J, BROSILLON S, et al. Coupling catalytic ozonation and membrane separation: A review[J]. Separation and Purification Technology, 2020, 236: 116221. doi: 10.1016/j.seppur.2019.116221
|
[9] |
YU J J, JIAO R Y, SUN H Y, et al. Removal of microorganic pollutants in aquatic environment: The utilization of Fe(VI)[J]. Journal of Environmental Management, 2022, 316: 115328. doi: 10.1016/j.jenvman.2022.115328
|
[10] |
KRAKOWIAK R, MUSIAL J, BAKUN P, et al. Titanium dioxide-based photocatalysts for degradation of emerging contaminants including pharmaceutical pollutants[J]. Applied Sciences, 2021, 11(18): 8674. doi: 10.3390/app11188674
|
[11] |
ARQUEROS C, ZAMORA F, MONTORO C. A perspective on the application of covalent organic frameworks for detection and water treatment[J]. Nanomaterials (Basel, Switzerland), 2021, 11(7): 1651. doi: 10.3390/nano11071651
|
[12] |
魏俊峰, 戴民汉, 洪华生, 等. 海洋中胶体的分布与微形貌特征[J]. 海洋科学, 2009, 33(3): 76-79.
WEI J F, DAI M H, HONG H S, et al. The distribution of marine colloids and their morphological characteristics[J]. Marine Sciences, 2009, 33(3): 76-79 (in Chinese).
|
[13] |
KNAPPENBERGER T, ARAMRAK S, FLURY M. Transport of barrel and spherical shaped colloids in unsaturated porous media[J]. Journal of Contaminant Hydrology, 2015, 180: 69-79. doi: 10.1016/j.jconhyd.2015.07.007
|
[14] |
王沛芳, 包天力, 胡斌, 等. 天然胶体的水环境行为[J]. 湖泊科学, 2021, 33(1): 28-48. doi: 10.18307/2021.0100
WANG P F, BAO T L, HU B, et al. Environmental behaviors of natural colloids in water environment[J]. Journal of Lake Sciences, 2021, 33(1): 28-48 (in Chinese). doi: 10.18307/2021.0100
|
[15] |
ZHOU J L, LIU R, WILDING A, et al. Sorption of selected endocrine disrupting chemicals to different aquatic colloids[J]. Environmental Science & Technology, 2007, 41(1): 206-213.
|
[16] |
赵伟高. 饮用水处理中胶体在过滤过程的迁移行为和沉积机理研究[D]. 天津: 天津大学, 2020.
ZHAO W G. Transport behavior and deposition mechanism of colloids in drinking water treatment during filtration[D]. Tianjin: Tianjin University, 2020 (in Chinese).
|
[17] |
LOCSIN J A, HOOD K M, DORÉ E, et al. Colloidal lead in drinking water: Formation, occurrence, and characterization[J]. Critical Reviews in Environmental Science and Technology, 2023, 53(1): 110-136. doi: 10.1080/10643389.2022.2039549
|
[18] |
TRUEMAN B F, ANAVIAPIK-SOUCIE T, L'HéRAULT V, et al. Characterizing colloidal metals in drinking water by field flow fractionation[J]. Environmental Science: Water Research & Technology, 2019, 5(12): 2202-2209.
|
[19] |
JUDY J D, KIRBY J K, FARRELL M, et al. Colloidal nitrogen is an important and highly-mobile form of nitrogen discharging into the Great Barrier Reef lagoon[J]. Scientific Reports, 2018, 8(1): 1-11.
|
[20] |
周蕾, 周永强, 张运林, 等. 重要饮用水源地天目湖水库有色可溶性有机物来源与组成特征[J]. 环境科学, 2021, 42(8): 3709-3718. doi: 10.13227/j.hjkx.202012280
ZHOU L, ZHOU Y Q, ZHANG Y L, et al. Characterizing sources and composition of chromophoric dissolved organic matter in a key drinking water reservoir lake tianmu[J]. Environmental Science, 2021, 42(8): 3709-3718 (in Chinese). doi: 10.13227/j.hjkx.202012280
|
[21] |
张美, 楼巧婷, 邵倩文, 等. 全氟化合物污染现状及风险评估的研究进展[J]. 生态毒理学报, 2019, 14(3): 30-53.
ZHANG M, LOU Q T, SHAO Q W, et al. Research progress of perfluorinated compounds pollution status and risk assessment[J]. Asian Journal of Ecotoxicology, 2019, 14(3): 30-53 (in Chinese).
|
[22] |
LI Y, LI W Y, JARVIS P, et al. Occurrence, removal and potential threats associated with microplastics in drinking water sources[J]. Journal of Environmental Chemical Engineering, 2020, 8(6): 104527. doi: 10.1016/j.jece.2020.104527
|
[23] |
DALMAU-SOLER J, BALLESTEROS-CANO R, FERRER N, et al. Microplastics throughout a tap water supply network[J]. Water and Environment Journal, 2022, 36(2): 292-298. doi: 10.1111/wej.12766
|
[24] |
许龙, 王志峰. 某水厂中微塑料的赋存及去除特性[J]. 净水技术, 2020, 39(7): 109-113, 120. doi: 10.15890/j.cnki.jsjs.2020.07.018
XU L, WANG Z F. Occurrence and removal of microplastics in a water treatment plant[J]. Water Purification Technology, 2020, 39(7): 109-113, 120 (in Chinese). doi: 10.15890/j.cnki.jsjs.2020.07.018
|
[25] |
TONG H Y, JIANG Q Y, HU X S, et al. Occurrence and identification of microplastics in tap water from China[J]. Chemosphere, 2020, 252: 126493. doi: 10.1016/j.chemosphere.2020.126493
|
[26] |
HU S Y, GONG T T, ZHU H T, et al. Formation and decomposition of new iodinated halobenzoquinones during chloramination in drinking water[J]. Environmental Science & Technology, 2020, 54(8): 5237-5248.
|
[27] |
ZHANG Z X, ZHU Q Y, HUANG C, et al. Comparative cytotoxicity of halogenated aromatic DBPs and implications of the corresponding developed QSAR model to toxicity mechanisms of those DBPs: Binding interactions between aromatic DBPs and catalase play an important role[J]. Water Research, 2020, 170: 115283. doi: 10.1016/j.watres.2019.115283
|
[28] |
STANGE C, YIN D, XU T, et al. Distribution of clinically relevant antibiotic resistance genes in Lake Tai, China[J]. Science of the Total Environment, 2019, 655: 337-346. doi: 10.1016/j.scitotenv.2018.11.211
|
[29] |
STOLL C, SIDHU J P S, TIEHM A, et al. Prevalence of clinically relevant antibiotic resistance genes in surface water samples collected from Germany and Australia[J]. Environmental Science & Technology, 2012, 46(17): 9716-9726.
|
[30] |
DEVARAJAN N, LAFFITE A, GRAHAM N D, et al. Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe[J]. Environmental Science & Technology, 2015, 49(11): 6528-6537.
|
[31] |
WU D H, ZHOU Y, LU G H, et al. The occurrence and risks of selected emerging pollutants in drinking water source areas in Henan, China[J]. International Journal of Environmental Research and Public Health, 2019, 16(21): 4109. doi: 10.3390/ijerph16214109
|
[32] |
曹美苑, 兰青, 许凭厘, 等. 城市生活饮用水中有机磷酸酯阻燃剂分布特征研究[J]. 广州化工, 2019, 47(5): 119-122. doi: 10.3969/j.issn.1001-9677.2019.05.044
CAO M Y, LAN Q, XU P L, et al. Study on distribution characteristics of organic phosphate flame retardant in drinking water in Guangzhou[J]. Guangzhou Chemical Industry, 2019, 47(5): 119-122 (in Chinese). doi: 10.3969/j.issn.1001-9677.2019.05.044
|
[33] |
冯雨欣, 马雪婷, 杨坤澎, 等. 饮用水中微生物检测技术的研究现状与发展方向[J]. 广东化工, 2022, 49(2): 62-63. doi: 10.3969/j.issn.1007-1865.2022.02.024
FENG Y X, MA X T, YANG K P, et al. Research status and development direction of microbial detection technology in drinking water[J]. Guangdong Chemical Industry, 2022, 49(2): 62-63 (in Chinese). doi: 10.3969/j.issn.1007-1865.2022.02.024
|
[34] |
丁润楠, 姚晓龙, 傅大放, 等. 中国东部湖泊有机氮浓度时空特征及影响因素[J]. 环境科学与技术, 2021, 44(6): 35-42. doi: 10.19672/j.cnki.1003-6504.2021.06.005
DING R N, YAO X L, FU D F, et al. Spatial and seasonal characteristics of organic nitrogen concentrations in lakes of Eastern China and its influencing factors[J]. Environmental Science & Technology, 2021, 44(6): 35-42(in Chinese). doi: 10.19672/j.cnki.1003-6504.2021.06.005
|
[35] |
BRONK D A, SEE J H, BRADLEY P, et al. DON as a source of bioavailable nitrogen for phytoplankton[J]. Biogeosciences, 2007, 4(3): 283-296. doi: 10.5194/bg-4-283-2007
|
[36] |
丁浩东, 万红友, 秦攀, 等. 环境中有机磷农药污染状况、来源及风险评价[J]. 环境化学, 2019, 38(3): 463-479. doi: 10.7524/j.issn.0254-6108.2018051405
DING H D, WAN H Y, QIN P, et al. Occurrence, sources and risk assessment of organophosphorus pesticides in the environment, China[J]. Environmental Chemistry, 2019, 38(3): 463-479 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018051405
|
[37] |
刘建超, 郑超亚, 任静华, 等. 平原河湖系统中典型全氟化合物的胶体吸附特征及生态风险评估[J]. 湖泊科学, 2021, 33(6): 1714-1726. doi: 10.18307/2021.0609
LIU J C, ZHENG C Y, REN J H, et al. Adsorption characteristics of perfluorinated compounds from colloids in the river-lake system of the plain and their ecological risk[J]. Journal of Lake Sciences, 2021, 33(6): 1714-1726 (in Chinese). doi: 10.18307/2021.0609
|
[38] |
YUAN Z H, NAG R, CUMMINS E. Human health concerns regarding microplastics in the aquatic environment - From marine to food systems[J]. Science of the Total Environment, 2022, 823: 153730. doi: 10.1016/j.scitotenv.2022.153730
|
[39] |
RAMIREZ ARENAS L, RAMSEIER GENTILE S, ZIMMERMANN S, et al. Fate and removal efficiency of polystyrene nanoplastics in a pilot drinking water treatment plant[J]. Science of the Total Environment, 2022, 813: 152623. doi: 10.1016/j.scitotenv.2021.152623
|
[40] |
ANIRUDHAN T S, BRINGLE C D, RIJITH S. Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay[J]. Journal of Environmental Radioactivity, 2010, 101(3): 267-276. doi: 10.1016/j.jenvrad.2009.12.001
|
[41] |
ANDERSON J C, PARK B J, PALACE V P. Microplastics in aquatic environments: Implications for Canadian ecosystems[J]. Environmental Pollution, 2016, 218: 269-280. doi: 10.1016/j.envpol.2016.06.074
|
[42] |
魏文哲, 罗家怡, 赵佳焱, 等. 饮用水中新型环状消毒副产物的毒性研究进展[J]. 生态毒理学报, 2021, 16(6): 87-103.
WEI W Z, LUO J Y, ZHAO J Y, et al. Research progress on toxicity of new cyclic disinfection byproducts in drinking water[J]. Asian Journal of Ecotoxicology, 2021, 16(6): 87-103 (in Chinese).
|
[43] |
WAGNER E D, PLEWA M J. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review[J]. Journal of Environmental Sciences, 2017, 58: 64-76. doi: 10.1016/j.jes.2017.04.021
|
[44] |
杨露敏, 宋晓翠, 张颖, 等. 自来水给水系统中有机磷酸酯的污染特征及健康风险评价[J]. 环境科学学报, 2021, 41(8): 3268-3278. doi: 10.13671/j.hjkxxb.2021.0040
YANG L M, SONG X C, ZHANG Y, et al. Pollution profile and risk assessment of organophosphate esters in a drinking water supply system of Tianjin[J]. Acta Scientiae Circumstantiae, 2021, 41(8): 3268-3278 (in Chinese) doi: 10.13671/j.hjkxxb.2021.0040
|
[45] |
LI J F, HE J H, LI Y N, et al. Assessing the threats of organophosphate esters (flame retardants and plasticizers) to drinking water safety based on USEPA oral reference dose (RfD) and oral cancer slope factor (SFO)[J]. Water Research, 2019, 154: 84-93. doi: 10.1016/j.watres.2019.01.035
|
[46] |
陈玲, 杨潇, 张琳钰, 等. 食品中环境新污染物危害管控研究[J]. 中国工程科学, 2022, 24(6): 99-106.
CHEN L, YANG X, ZHANG L Y, et al. Hazard and management of emerging environmental pollutants in food of China[J]. Strategic Study of CAE, 2022, 24(6): 99-106 (in Chinese).
|
[47] |
叶长春, 李颖, 陈子璐, 等. 饮食中有机磷酸酯暴露现状及其对消化系统影响的研究进展[J]. 中国普外基础与临床杂志, 2022, 29(5): 677-682.
YE C C, LI Y, CHEN Z L, et al. Research progress on dietary organophosphate esters exposure and its effect on digestive system[J]. Chinese Journal of Bases and Clinics in General Surgery, 2022, 29(5): 677-682 (in Chinese).
|
[48] |
慕妮, 何薛纯, 樊青青, 等. 包装饮用水中铜绿假单胞菌检测方法的比较分析[J]. 生物化工, 2021, 7(6): 151-155. doi: 10.3969/j.issn.2096-0387.2021.06.038
MU N, HE X C, FAN Q Q, et al. Comparative analysis of detection methods of Pseudomonas aeruginosa in packaged drinking water[J]. Biological Chemical Engineering, 2021, 7(6): 151-155 (in Chinese). doi: 10.3969/j.issn.2096-0387.2021.06.038
|
[49] |
HE S Y, JIA M Y, XIANG Y P, et al. Biofilm on microplastics in aqueous environment: Physicochemical properties and environmental implications[J]. Journal of Hazardous Materials, 2022, 424: 127286. doi: 10.1016/j.jhazmat.2021.127286
|
[50] |
汤鸿霄. 环境水质学的进展: 颗粒物与表面络合(上)[J]. 环境科学进展, 1993(1): 25-41.
TANG H X. Advances in environmental aquatic quality science: Particulates and surface complexation, Ⅰ[J]. Chinese Journal of Environmental Engineering, 1993(1): 25-41 (in Chinese).
|
[51] |
PAN B, QIU M Y, WU M, et al. The opposite impacts of Cu and Mg cations on dissolved organic matter-ofloxacin interaction[J]. Environmental Pollution, 2012, 161: 76-82. doi: 10.1016/j.envpol.2011.09.040
|
[52] |
马骁腾. 饱和多孔介质中微塑料和大肠杆菌迁移沉积影响因素研究[D]. 天津: 天津大学, 2019.
MA X T. Influencing factors on transport and deposition of microplastics and Escherichia coli in saturated porous media[D]. Tianjin: Tianjin University, 2019 (in Chinese).
|
[53] |
LI X Q, HUA Z L. Multiphase distribution and spatial patterns of perfluoroalkyl acids (PFAAs) associated with catchment characteristics in a plain river network[J]. Chemosphere, 2021, 263: 128284. doi: 10.1016/j.chemosphere.2020.128284
|
[54] |
GIESY J P, KANNAN K. Perfluorochemical surfactants in the environment[J]. Environmental Science & Technology, 2002, 36(7): 146A-152A.
|
[55] |
张文静, 周晶晶, 刘丹, 等. 胶体在地下水中的环境行为特征及其研究方法探讨[J]. 水科学进展, 2016, 27(4): 629-638. doi: 10.14042/j.cnki.32.1309.2016.04.018
ZHANG W J, ZHOU J J, LIU D, et al. A review: Research methods that describe the environmental behavior of colloids in groundwater[J]. Advances in Water Science, 2016, 27(4): 629-638 (in Chinese). doi: 10.14042/j.cnki.32.1309.2016.04.018
|
[56] |
姚舜译. 大肠杆菌在饱和多孔介质中的迁移过程研究[D]. 雅安: 四川农业大学, 2016.
YAO S Y. Transport of Escherichia coli in saturated porous media[D]. Yaan: Sichuan Agricultural University, 2016 (in Chinese).
|
[57] |
崔丽敏. 大肠杆菌在不同表面粗糙度多孔介质中的迁移行为研究[D]. 天津: 天津大学, 2020.
CUI L M. The transport behaviors of Escherichia coli in porous media under different surface roughness[D]. Tianjin: Tianjin University, 2020 (in Chinese).
|
[58] |
YAO K, HABIBIAN M T, O’MELIA C R. Water and waste water filtration: Concepts and applications[J]. Environmental Science and Technology, 1971, 5(11): 1105-1112. doi: 10.1021/es60058a005
|
[59] |
巩霏, 李华, 孙艺嘉, 等. 有机质对土壤中多环芳烃纵向迁移的影响[J]. 环境科学研究, 2022, 35(7): 1681-1689. doi: 10.13198/j.issn.1001-6929.2022.03.13
GONG F, LI H, SUN Y J, et al. Effect of organic matter on longitudinal migration of polycyclic aromatic hydrocarbons in soil[J]. Research of Environmental Sciences, 2022, 35(7): 1681-1689 (in Chinese). doi: 10.13198/j.issn.1001-6929.2022.03.13
|
[60] |
ZHAO P, CUI L M, ZHAO W G, et al. Cotransport and deposition of colloidal polystyrene microplastic particles and tetracycline in porous media: The impact of ionic strength and cationic types[J]. Science of the Total Environment, 2021, 753: 142064. doi: 10.1016/j.scitotenv.2020.142064
|
[61] |
ZHAO W G, ZHAO P, TIAN Y M, et al. Transport and retention of Microcystis aeruginosa in porous media: Impacts of ionic strength, flow rate, media size and pre-oxidization[J]. Water Research, 2019, 162: 277-287. doi: 10.1016/j.watres.2019.07.001
|
[62] |
何楠, 郭浩, 刘菁, 等. 供水管道中金属污染物富集与释放研究进展[J]. 中国给水排水, 2022, 38(2): 21-29. doi: 10.19853/j.zgjsps.1000-4602.2022.02.004
HE N, GUO H, LIU J, et al. Research progress on enrichment and release of metal pollutants in water supply pipelines[J]. China Water & Wastewater, 2022, 38(2): 21-29 (in Chinese). doi: 10.19853/j.zgjsps.1000-4602.2022.02.004
|
[63] |
LIU Q L, HAN W Q, HAN B J, et al. Assessment of heavy metals in loose deposits in drinking water distribution system[J]. Environmental Monitoring and Assessment, 2018, 190(7): 388. doi: 10.1007/s10661-018-6761-9
|
[64] |
LI M J, LIU Z W, CHEN Y C, et al. Effects of varying temperatures and alkalinities on the corrosion and heavy metal release from low-lead galvanized steel[J]. Environmental Science and Pollution Research, 2020, 27(2): 2412-2422. doi: 10.1007/s11356-019-06893-2
|
[65] |
MANNING B A, HUNT M L, AMRHEIN C, et al. Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products[J]. Environmental Science & Technology, 2002, 36(24): 5455-5461.
|
[66] |
LIU J Q, CHEN H Y, YAO L D, et al. The spatial distribution of pollutants in pipe-scale of large-diameter pipelines in a drinking water distribution system[J]. Journal of Hazardous Materials, 2016, 317: 27-35. doi: 10.1016/j.jhazmat.2016.05.048
|
[67] |
PROKOPOVA M, NOVOTNA K, PIVOKONSKA L, et al. Coagulation of polyvinyl chloride microplastics by ferric and aluminium sulphate: Optimisation of reaction conditions and removal mechanisms[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106465. doi: 10.1016/j.jece.2021.106465
|
[68] |
张静, 张晓岚, 蔡佳男, 等. 抗生素在给水厂中的去除及其对水质的影响研究综述[J]. 净水技术, 2022, 41(1): 23-30. doi: 10.15890/j.cnki.jsjs.2022.01.004
ZHANG J, ZHANG X L, CAI J N, et al. Review of research on antibiotics removal and effects on water quality in waterworks[J]. Water Purification Technology, 2022, 41(1): 23-30 (in Chinese). doi: 10.15890/j.cnki.jsjs.2022.01.004
|
[69] |
YU Y Y, SUN Y J, ZHOU J, et al. Preparation and characterization of high-efficiency magnetic heavy metal capture flocculants[J]. Water, 2021, 13(13): 1732. doi: 10.3390/w13131732
|
[70] |
钟婷婷, 林涛, 刘威. 饮用水处理过程中全氟化合物的分布、转化及去向[J]. 环境科学, 2022: 1-18.
ZHONG T T, LIN T, LIU W. Distribution, tansformation, and fate of per- and polyfluoroalkyl substances in drinking water treatment[J]. Environmental Science, 2022: 1-18 (in Chinese).
|
[71] |
TONG M P, HE L, RONG H F, et al. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe3O4-biochar amendment[J]. Water Research, 2020, 169: 115284. doi: 10.1016/j.watres.2019.115284
|
[72] |
徐丽梅, 张崇淼, 王晓昌, 等. 紫外线和次氯酸钠对Escherichia coli和Poliovirus的消毒作用[J]. 环境科学, 2017, 38(5): 1928-1935.
XU L M, ZHANG C M, WANG X C, et al. Disinfection action of ultraviolet radiation and chlorination on Escherichia coli and poliovirus[J]. Environmental Science, 2017, 38(5): 1928-1935 (in Chinese).
|
[73] |
王赛, 张岚, 陈永艳, 等. 饮用水处理技术去除微塑料的效果及进展[J]. 净水技术, 2021, 40(10): 20-25, 61. doi: 10.15890/j.cnki.jsjs.2021.10.003
WANG S, ZHANG L, CHEN Y Y, et al. Effect and progress of microplastics removal in drinking water treatment process[J]. Water Purification Technology, 2021, 40(10): 20-25, 61 (in Chinese). doi: 10.15890/j.cnki.jsjs.2021.10.003
|
[74] |
王少华, 施卫娟, 贺鑫, 等. 纳滤深度处理在饮用水厂的应用与实践[J]. 给水排水, 2021, 57(10): 13-19. doi: 10.13789/j.cnki.wwe1964.2021.10.003
WANG S H, SHI W J, HE X, et al. Application and practice of nanofiltration advanced treatment in water treatment plant[J]. Water & Wastewater Engineering, 2021, 57(10): 13-19 (in Chinese). doi: 10.13789/j.cnki.wwe1964.2021.10.003
|
[75] |
秦源, 于水利, 顾正阳, 等. MOFs改性纳滤膜去除饮用水中微量有机物进展[J]. 中国给水排水, 2022, 38(4): 44-48. doi: 10.19853/j.zgjsps.1000-4602.2022.04.008
QIN Y, YU S L, GU Z Y, et al. Research progress of the trace organic pollutants removal from drinking water by modified nanofiltration membranes with metal organic frameworks[J]. China Water & Wastewater, 2022, 38(4): 44-48 (in Chinese). doi: 10.19853/j.zgjsps.1000-4602.2022.04.008
|
[76] |
LIU B Z, CHEN X, ZHENG H L, et al. Rapid and efficient removal of heavy metal and cationic dye by carboxylate-rich magnetic chitosan flocculants: Role of ionic groups[J]. Carbohydrate Polymers, 2018, 181: 327-336. doi: 10.1016/j.carbpol.2017.10.089
|
[77] |
ZHANG Y L, DIEHL A, LEWANDOWSKI A, et al. Removal efficiency of micro- and nanoplastics (180nm–125μm) during drinking water treatment[J]. Science of the Total Environment, 2020, 720: 137383. doi: 10.1016/j.scitotenv.2020.137383
|
[78] |
李圭白, 梁恒, 白朗明, 等. 绿色工艺: 第三代饮用水净化工艺的发展方向[J]. 给水排水, 2021, 57(9): 1-5.
LI G B, LIANG H, BAI L M, et al. Green process: Development direction of the third generation drinking water purification process[J]. Water & Wastewater Engineering, 2021, 57(9): 1-5 (in Chinese).
|
[79] |
孙晓晨, 易琳雅, 汪楠, 等. 微塑料在饮用水中的去除研究进展[J]. 环境科学与技术, 2021, 44(6): 211-218. doi: 10.19672/j.cnki.1003-6504.2021.06.026
SUN X C, YI L Y, WANG N, et al. Research progress on the removal of microplastics in drinking water[J]. Environmental Science & Technology, 2021, 44(6): 211-218 (in Chinese). doi: 10.19672/j.cnki.1003-6504.2021.06.026
|
[80] |
JIANG J Y, ZHANG X R. A smart strategy for controlling disinfection byproducts by reversing the sequence of activated carbon adsorption and chlorine disinfection[J]. Science Bulletin, 2018, 63(18): 1167-1169. doi: 10.1016/j.scib.2018.07.022
|
[81] |
陈超, 张晓健, 朱玲侠, 等. 控制消毒副产物及前体物的优化工艺组合[J]. 环境科学, 2005, 26(4): 87-94. doi: 10.13227/j.hjkx.2005.04.017
CHEN C, ZHANG X J, ZHU L X, et al. Optimal process combination for control of disinfection by-products and precursors[J]. Environmental Science, 2005, 26(4): 87-94 (in Chinese). doi: 10.13227/j.hjkx.2005.04.017
|
[82] |
WANG Z F, LIN T, CHEN W. Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP)[J]. Science of the Total Environment, 2020, 700: 134520. doi: 10.1016/j.scitotenv.2019.134520
|
[83] |
ROSS P S, van der AA L T J, van DIJK T, et al. Effects of water quality changes on performance of biological activated carbon (BAC) filtration[J]. Separation and Purification Technology, 2019, 212: 676-683. doi: 10.1016/j.seppur.2018.11.072
|