[1] |
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. doi: 10.1038/238037a0
|
[2] |
LAOKAE D, PHURUANGRAT A, THONGTEN T, et al. Synthesis, Analysis and visible-light-driven photocatalysis of 0-5% Pr-Doped ZnO nanoparticles[J]. Russian Journal of Inorganic Chemistry, 2022, 67(5): 721-731. doi: 10.1134/S0036023622050114
|
[3] |
MADONA J, SRIDEVI C. Surfactant assisted hydrothermal synthesis of MgO/g-C3N4 heterojunction nanocomposite for enhanced solar photocatalysis and antimicrobial activities[J]. Inorganic Chemistry Communications, 2022, 138: 109265. doi: 10.1016/j.inoche.2022.109265
|
[4] |
WANG M Q, LIU Y, ZHENG M, et al. Enhanced visible light response of Ag/SnO2 nanostructure enables high-efficiency photocatalytic hydrogen evolution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650: 129577. doi: 10.1016/j.colsurfa.2022.129577
|
[5] |
DAI B L, ZHAO W, HUANG H, et al. Constructing an ohmic junction of copper@ cuprous oxide nanocomposite with plasmonic enhancement for photocatalysis[J]. Journal of Colloid and Interface Science, 2022, 616: 163-176. doi: 10.1016/j.jcis.2022.02.056
|
[6] |
BULLO T A, BAYISA Y M, BULTUM M S. Optimization and biosynthesis of calcined chicken eggshell doped titanium dioxide photocatalyst based nanoparticles for wastewater treatment[J]. SN Applied Sciences, 2022, 4(1): 17. doi: 10.1007/s42452-021-04900-1
|
[7] |
HARDIANSYAH A, BUDIMAN W J, YUDASARI N, et al. Facile and green fabrication of microwave-assisted reduced graphene oxide/titanium dioxide nanocomposites as photocatalysts for rhodamine 6G degradation[J]. ACS Omega, 2021, 6(47): 32166-32177. doi: 10.1021/acsomega.1c04966
|
[8] |
YI Z, YE J, KIKUGAWA N, et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation[J]. Nature materials, 2010, 9(7): 559-564. doi: 10.1038/nmat2780
|
[9] |
LI N, FAN G D, FAN M M, et al. All-solid-state Z-scheme Ag3PO4/CSs/AgBr heterostructures for efficient visible-light photocatalysis and the photocatalytic mechanism[J]. Dalton Transactions , 2021, 50(43): 15602-15611.
|
[10] |
CHEN Z H, BING F, LIU Q, et al. Novel Z-scheme visible-light-driven Ag3PO4/Ag/SiC photocatalysts with enhanced photocatalytic activity[J]. Journal of Materials Chemistry A, 2015, 3(8): 4652-4658. doi: 10.1039/C4TA06530A
|
[11] |
XU Y G, GE F Y, XIE M, et al. Fabrication of magnetic BaFe12O19/Ag3PO4 composites with an in situ photo-Fenton-like reaction for enhancing reactive oxygen species under visible light irradiation[J]. Catalysis Science & Technology, 2019, 9(10): 2563-2570.
|
[12] |
PANIGRAHY B, SRIVASTAVA S. Minuscule weight percent of graphene oxide and reduced graphene oxide modified Ag3PO4: New insight into improved photocatalytic activity[J]. New Journal of Chemistry, 2016, 40(4): 3370-3384. doi: 10.1039/C5NJ03118D
|
[13] |
ZHU P F, CHEN Y J, DUAN M, et al. Construction and mechanism of a highly efficient and stable Z-scheme Ag3PO4/reduced graphene oxide/Bi2MoO6 visible-light photocatalyst[J]. Catalysis Science & Technology, 2018, 8(15): 3818-3832.
|
[14] |
ZHANG Z G, HUANG W Q, XIE Z, et al. Simultaneous covalent and noncovalent carbon nanotube/Ag3PO4 hybrids: new insights into the origin of enhanced visible light photocatalytic performance[J]. Physical Chemistry Chemical Physics: PCCP, 2017, 19(11): 7955-7963. doi: 10.1039/C6CP08853H
|
[15] |
HELMHOLZ L. The crystal structure of silver phosphate[J]. The Journal of Chemical Physics, 1936, 4(5): 316-322. doi: 10.1063/1.1749847
|
[16] |
NG H N, CALVO C, FAGGIANI R. A new investigation of the structure of silver orthophosphate[J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1978, 34(3): 898-899. doi: 10.1107/S0567740878014570
|
[17] |
CHEN X J, DAI Y Z, WANG X Y. Methods and mechanism for improvement of photocatalytic activity and stability of Ag3PO4: A review[J]. Journal of Alloys and Compounds, 2015, 649: 910-932. doi: 10.1016/j.jallcom.2015.07.174
|
[18] |
MA X G, LU B, LI D, et al. Origin of photocatalytic activation of silver orthophosphate from first-principles[J]. The Journal of Physical Chemistry C, 2011, 115(11): 4680-4687. doi: 10.1021/jp111167u
|
[19] |
CHEN Z H, WANG W L, ZHANG Z G, et al. High-efficiency visible-light-driven Ag3PO4/AgI photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic activity[J]. The Journal of Physical Chemistry C , 2013, 117(38): 19346-19352. doi: 10.1021/jp406508y
|
[20] |
SILVA G N, MARTINS T A, NOGUEIRA I C, et al. Synthesis of Ag3PO4/SnO2 composite photocatalyst for improvements in photocatalytic activity under visible light[J]. Materials Science in Semiconductor Processing, 2021, 135: 106064. doi: 10.1016/j.mssp.2021.106064
|
[21] |
YU Y, YAO B, HE Y, et al. Piezo-enhanced photodegradation of organic pollutants on Ag3PO4/ZnO nanowires using visible light and ultrasonic[J]. Applied Surface Science, 2020, 528(30): 146819.
|
[22] |
CHEN G H, WANG H J, DONG W Y, et al. Graphene dispersed and surface plasmon resonance-enhanced Ag3PO4 (DSPR-Ag3PO4) for visible light driven high-rate photodegradation of carbamazepine[J]. Chemical Engineering Journal, 2021, 405: 126850. doi: 10.1016/j.cej.2020.126850
|
[23] |
HE G, YANG W, ZHENG W, et al. Facile controlled synthesis of Ag3PO4 with various morphologies for enhanced photocatalytic oxygen evolution from water splitting[J]. RSC advances, 2019, 9(32): 18222-18231. doi: 10.1039/C9RA01306G
|
[24] |
FAN X Y, SHAO J, LI Z J, et al. Facile synthesis of rGO/Ag3PO4 by enhanced photocatalytic degradation of an organic dye using a microwave-assisted method[J]. New Journal of Chemistry, 2016, 40(2): 1330-1335. doi: 10.1039/C5NJ02369F
|
[25] |
PROMNOPAS S, PROMNOPAS W, MAISANG W, et al. One-step microwave-hydrothermal synthesis of visible-light-driven Ag3PO4/LaPO4 photocatalyst induced by visible light irradiation[J]. Chemical Physics Letters, 2021, 779: 138883. doi: 10.1016/j.cplett.2021.138883
|
[26] |
LIU J K, LUO C X, WANG J D, et al. Controlled synthesis of silver phosphate crystals with high photocatalytic activity and bacteriostatic activity[J]. CrystEngComm, 2012, 14(24): 8714-8721. doi: 10.1039/c2ce25604e
|
[27] |
WANG L P, WANG L M, CHU D Q, et al. Tartaric acid-assisted synthesis of Ag3PO4 hollow microspheres with enhanced photocatalytic properties[J]. Catalysis Communications, 2017, 88: 53-55. doi: 10.1016/j.catcom.2016.09.008
|
[28] |
BI Y P, OUYANG S X, UMEZAWA N, et al. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties[J]. Journal of the American Chemical Society, 2011, 133(17): 6490-6492. doi: 10.1021/ja2002132
|
[29] |
INDRA A, MENEZES P W, SCHWARZE M, et al. Visible light driven non-sacrificial water oxidation and dye degradation with silver phosphates: Multi-faceted morphology matters[J]. New Journal of Chemistry, 2014, 38(5): 1942-1945. doi: 10.1039/C3NJ01012K
|
[30] |
MENEZES P W, INDRA A, SCHWARZE M, et al. Morphology-dependent activities of silver phosphates: Visible‐light water oxidation and dye degradation[J]. ChemPlusChem, 2016, 81(10): 1068-1074. doi: 10.1002/cplu.201500538
|
[31] |
WANG J, CAI Y F, DU H X, et al. Improve the structure through pH-control to improve the photocatalytic performance of cubic silver phosphate photocatalyst[J]. Journal of Dispersion Science and Technology, 2022, 43(9): 1399-1404. doi: 10.1080/01932691.2020.1869030
|
[32] |
LI H, ZHANG L Z. Oxygen vacancy induced selective silver deposition on the {001} facets of BiOCl single-crystalline nanosheets for enhanced Cr(VI) and sodium pentachlorophenate removal under visible light[J]. Nanoscale, 2014, 6(14): 7805-7810. doi: 10.1039/C4NR01315H
|
[33] |
AWAZU K, FUJIMAKI M, ROCKSTUHL C, et al. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide[J]. Journal of the American Chemical Society, 2008, 130(5): 1676-1680. doi: 10.1021/ja076503n
|
[34] |
ALSHAMSI H A, BESHKAR F, AMIRI O, et al. Porous hollow Ag/Ag2S/Ag3PO4 nanocomposites as highly efficient heterojunction photocatalysts for the removal of antibiotics under simulated sunlight irradiation[J]. Chemosphere, 2021, 274: 129765. doi: 10.1016/j.chemosphere.2021.129765
|
[35] |
LIU Z N, LIU Y C, XU P P, et al. Rational design of wide spectral-responsive heterostructures of Au nanorod coupled Ag3PO4 with enhanced photocatalytic performance[J]. ACS Applied Materials & Interfaces, 2017, 9(24): 20620-20629.
|
[36] |
ZHANG S Q, YU T, WEN H, et al. Enhanced photocatalytic activity of a visible-light-driven ternary WO3/Ag/Ag3PO4 heterojunction: a discussion on electron transfer mechanisms[J]. RSC Advances. , 2020, 10(29): 16892-16903. doi: 10.1039/D0RA01731K
|
[37] |
SONG Z, HUANG G S, WEI H T, et al. Fabrication and characterization of high efficiency and stable Ag/AgFeO2/Ag3PO4 ternary heterostructures nanocatalyst[J]. Applied Physics A, 2022, 128(7): 552. doi: 10.1007/s00339-022-05647-1
|
[38] |
CHEN Y J, TSENG C S, TSENG P J, et al. Synthesis and characterization of Ag/Ag3PO4 nanomaterial modified BiPO4 photocatalyst by sonochemical method and its photocatalytic application[J]. Journal of Material Science: Materials in Electronics, 2017, 28(16): 11886-11899. doi: 10.1007/s10854-017-6997-0
|
[39] |
WANG F R, WANG J D, SUN H P, et al. Plasmon-enhanced instantaneous photocatalytic activity of Au@Ag3PO4 heterostructure targeted at emergency treatment of environmental pollution[J]. Journal of Materials Science, 2017, 52(5): 2495-2510. doi: 10.1007/s10853-016-0544-x
|
[40] |
DAI Y X, WANG Y T, ZOU G C, et al. Photodegradation of acenaphthylene over plasmonic Ag/Ag3PO4 nanopolyhedrons synthesized via in-situ reduction[J]. Applied Surface Science, 2022, 572: 151421. doi: 10.1016/j.apsusc.2021.151421
|
[41] |
DŁugosz O, BANACH M. Flow synthesis of Ag3PO4/nAg nanoparticles and its photocatalytic and antimicrobial properties[J]. Materials Chemistry and Physics, 2022, 278: 125586. doi: 10.1016/j.matchemphys.2021.125586
|
[42] |
HASSANI A, KHATAEE A, KARACA S, et al. Sonocatalytic degradation of ciprofloxacin using synthesized TiO2 nanoparticles on montmorillonite[J]. Ultrasonics Sonochemistry, 2017, 35: 251-262. doi: 10.1016/j.ultsonch.2016.09.027
|
[43] |
HONARMAND M, NAEIMI A, REZAKHANI M S, et al. Ni/NiO doped chitosan-cellulose based on the wastes of barley and shrimp for degradation of ciprofloxacin antibiotic[J]. Journal of Materials Research and Technology, 2022, 18: 4060-4074. doi: 10.1016/j.jmrt.2022.04.046
|
[44] |
WU G Y, XING W N. Facile preparation of semiconductor silver phosphate loaded on multi-walled carbon nanotube surface and its enhanced catalytic performance[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29(2): 617-627. doi: 10.1007/s10904-018-1036-z
|
[45] |
NEKOUEI F, NEKOUEI S, NOORIZADEH H. Enhanced adsorption and catalytic oxidation of ciprofloxacin by an Ag/AgCl@ N-doped activated carbon composite[J]. Journal of Physics and Chemistry of Solids, 2018, 114: 36-44. doi: 10.1016/j.jpcs.2017.11.002
|
[46] |
JIN J F, LIU M, FENG L H, et al. 3D Bombax-structured carbon nanotube sponge coupling with Ag3PO4 for tetracycline degradation under ultrasound and visible light irradiation[J]. Science of The Total Environment, 2019, 695: 133694. doi: 10.1016/j.scitotenv.2019.133694
|
[47] |
李法云, 李佳宇, 吝美霞, 等. 大豆秸秆生物炭负载石墨相氮化碳对土壤石油烃的光催化降解[J]. 应用基础与工程科学学报, 2022, 30(3): 519-529. doi: 10.16058/j.issn.1005-0930.2022.03.001
LI F Y, LI J Y, LIN M X, et al. Photocatalytic degradation of soil petroleum hydrocarbons by biochar supported graphite phase carbon nitride [J]. Journal of Basic Science and Engineering, 2022, 30(3): 519-529(in Chinese). doi: 10.16058/j.issn.1005-0930.2022.03.001
|
[48] |
ZHOU T H, HUANG X X, ZHANG H W, et al. Tuning the electronic structure of Ag3PO4-based composites through a graphene oxide mediator for enhanced photocatalytic activity[J]. Catalysis Science & Technology Technol, 2020, 10(22): 7661-7670.
|
[49] |
LIU Z J, HAO J Y, WANG Y, et al. Decorating Ag3PO4 nanodots on mesoporous silica-functionalized NaYF4: Yb, Tm@NaLuF4 for efficient sunlight-driven photocatalysis: synergy of broad spectrum absorption and pollutant adsorption-enrichment[J]. Inorganic Chemistry Frontiers, 2019, 6(12): 3529-3538. doi: 10.1039/C9QI01003C
|
[50] |
HUANG P Q, LUAN J F. Preparation and characterization of an Ag3PO4/GaOOH composite with enhanced photocatalytic performance toward rhodamine B[J]. New Journal of Chemistry, 2020, 44(6): 2414-2422. doi: 10.1039/C9NJ05987C
|
[51] |
YANG X F, CUI H Y, LI Y, et al. Fabrication of Ag3PO4-graphene composites with highly efficient and stable visible light photocatalytic performance[J]. ACS Catalysis. 2013, 3(3): 363-369.
|
[52] |
SHARMA M, OJHA K, GANGULY A, et al. Ag3PO4 nanoparticle decorated on SiO2 spheres for efficient visible light photocatalysis[J]. New Journal of Chemistry, 2015, 39(12): 9242-9248. doi: 10.1039/C5NJ01157D
|
[53] |
PADMANABHAN S K, PAL S, LICCIULLI A. Diatomite/silver phosphate composite for efficient degradation of organic dyes under solar radiation[J]. Bulletin of Materials Science, 2020, 43(1): 295. doi: 10.1007/s12034-020-02269-2
|
[54] |
AO Y H, WANG P F, WANG C, et al. Preparation of graphene oxide-Ag3PO4 composite photocatalyst with high visible light photocatalytic activity[J]. Applied Surface Science, 2013, 271: 265-270. doi: 10.1016/j.apsusc.2013.01.173
|
[55] |
SADEGHI FARSHI F, BEHNAJADY M A, ABEROOMAND AZAR P, et al. A mechanistic study on photocatalytic activity of hydrothermally synthesized titanium dioxide nanowires decorated by silver phosphate[J]. Materials Science in Semiconductor Processing, 2022, 142: 106501. doi: 10.1016/j.mssp.2022.106501
|
[56] |
CHRISTOFORIDIS K C. g-C3N4/Ag3PO4 based binary and ternary heterojunction for improved photocatalytic removal of organic pollutants[J]. International Journal of Environmental Analytical Chemistry, 2021: 1-16.
|
[57] |
RAO X, DOU H L, LONG D, et al. Ag3PO4/g-C3N4 nanocomposites for photocatalytic degradating gas phase formaldehyde at continuous flow under 420 nm LED irradiation[J]. Chemosphere, 2020, 244: 125462. doi: 10.1016/j.chemosphere.2019.125462
|
[58] |
LI Q S, YANG C. Facile fabrication of Ag3PO4 supported on ZnO inverse opals for enhancement of solar-driven photocatalysis[J]. Materials Letters, 2017, 199: 168-171. doi: 10.1016/j.matlet.2017.04.058
|
[59] |
MARTÍN-GÓMEZ A N, NAVÍO J A, JARAMILLO-PÁEZ C, et al. Hybrid ZnO/Ag3PO4 photocatalysts, with low and high phosphate molar percentages[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 388: 112196. doi: 10.1016/j.jphotochem.2019.112196
|
[60] |
MIRSALARI S A, NEZAMZADEH-EJHIEH A. CdS-Ag3PO4 nano-catalyst: A brief characterization and kinetic study towards methylene blue photodegradation[J]. Materials Science in Semiconductor Processing, 2021, 122: 105455. doi: 10.1016/j.mssp.2020.105455
|
[61] |
SU J H, FAN Y T, YAN Y, et al. A one-pot synthesis of AgBr/Ag3PO4 composite photocatalysts[J]. RSC Advances, 2021, 11(17): 9865-9873. doi: 10.1039/D0RA10265B
|
[62] |
SANTOS R K, MARTINS T A, SILVA G N, et al. Ag3PO4/NiO composites with enhanced photocatalytic activity under visible light[J]. ACS Omega, 2020, 5(34): 21651-21661. doi: 10.1021/acsomega.0c02456
|
[63] |
NIU X, DU Y, LIU J, et al. Facile synthesis of TiO2/MoS2 composites with Co-exposed high-energy facets for enhanced photocatalytic performance[J]. Micromachines, 2022, 13(11): 1812. doi: 10.3390/mi13111812
|
[64] |
CAI T, ZENG W G, LIU Y T, et al. A promising inorganic-organic Z-scheme photocatalyst Ag3PO4/PDI supermolecule with enhanced photoactivity and photostability for environmental remediation[J]. Applied Catalysis B: Environmental, 2020, 263: 118327. doi: 10.1016/j.apcatb.2019.118327
|
[65] |
TANG M L, AO Y H, WANG C , et al. Facile synthesis of dual Z-scheme g-C3N4/Ag3PO4/AgI composite photocatalysts with enhanced performance for the degradation of a typical neonicotinoid pesticide[J]. Applied Catalysis B: Environmental, 2020, 268: 118395.
|
[66] |
GUO S Y, JIANG Y N, WU F, et al. Graphdiyne-promoted highly efficient photocatalytic activity of graphdiyne/silver phosphate pickering emulsion under visible-light irradiation[J]. ACS Applied Materials & Interfaces, 2019, 11(3): 2684-2691.
|
[67] |
ZHU P, LIN J, XIE L, et al. Visible light response photocatalytic performance of Z-scheme Ag3PO4/GO/UiO-66-NH2 photocatalysts for the levofloxacin hydrochloride[J]. Langmuir, 2021, 37(45): 13309-13321. doi: 10.1021/acs.langmuir.1c01901
|
[68] |
GUO C, CHEN M, WU L, et al. Nanocomposites of Ag3PO4 and phosphorus-doped graphitic carbon nitride for ketamine removal[J]. ACS Applied Nano Materials, 2019, 2(5): 2817-2829. doi: 10.1021/acsanm.9b00295
|
[69] |
JI B, ZHAO W F, DUAN J L, et al. Immobilized Ag3PO4/GO on 3D nickel foam and its photocatalytic degradation of norfloxacin antibiotic under visible light[J]. RSC Advances, 2020, 10(8): 4427-4435. doi: 10.1039/C9RA08678A
|
[70] |
SU W T, LIU X M, TAN L, et al. Rapid sterilization by photocatalytic Ag3PO4/α-Fe2O3 composites using visible light[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(6): 2577-2585.
|
[71] |
TRENCH A B, MACHADO T R, GOUVEIA A F, et al. Rational design of W-doped Ag3PO4 as an efficient antibacterial agent and photocatalyst for organic pollutant degradation[J]. ACS Omega, 2020, 5(37): 23808-23821. doi: 10.1021/acsomega.0c03019
|
[72] |
LI D S, WANG H C, TANG H, et al. Remarkable enhancement in solar oxygen evolution from MoSe2/Ag3PO4 heterojunction photocatalyst via in situ constructing interfacial contact[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8466-8474.
|
[73] |
GUAN X J, GUO L J. Cocatalytic effect of SrTiO3 on Ag3PO4 toward enhanced photocatalytic water oxidation[J]. ACS Catalysis, 2014, 4(9): 3020-3026. doi: 10.1021/cs5005079
|
[74] |
QI F J, LI H L, YANG Z Q, et al. Efficient reduction of CO2 to CO by Ag3PO4/TiO2 photocatalyst under ultraviolet and visible light irradiation[J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15(5): 1-10.
|
[75] |
FENG H G, ZHANG C M, LUO M H, et al. A dual S-scheme TiO2@In2Se3@ Ag3PO4 heterojunction for efficient photocatalytic CO2 reduction[J]. Nanoscale, 2022, 14(43): 16303-16313. doi: 10.1039/D2NR04707A
|