[1] |
ONDON B S, SUN B, YAN Z Y, et al. Microwave preparation of modified activated carbons for phenol adsorption in aqueous solution[J]. Advanced Materials Research, 2013, 726/727/728/729/730/731: 1883-1889.
|
[2] |
HAO W M, BJÖRKMAN E, LILLIESTRÅLE M, et al. Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2[J]. Applied Energy, 2013, 112: 526-532. doi: 10.1016/j.apenergy.2013.02.028
|
[3] |
JIANG N, SHANG R, HEIJMAN S G J, et al. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review[J]. Water Research, 2018, 144: 145-161. doi: 10.1016/j.watres.2018.07.017
|
[4] |
ALVER E, METIN A Ü. Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies[J]. Chemical Engineering Journal, 2012, 200/201/202: 59-67.
|
[5] |
YOUSEF R I, EL-ESWED B, AL-MUHTASEB A H. Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: Kinetics, mechanism, and thermodynamics studies[J]. Chemical Engineering Journal, 2011, 171(3): 1143-1149. doi: 10.1016/j.cej.2011.05.012
|
[6] |
PAN X Q, GU Z P, CHEN W M, et al. Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: A review[J]. Science of the Total Environment, 2021, 754: 142104. doi: 10.1016/j.scitotenv.2020.142104
|
[7] |
DING Z H, HU X, WAN Y S, et al. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests[J]. Journal of Industrial and Engineering Chemistry, 2016, 33: 239-245. doi: 10.1016/j.jiec.2015.10.007
|
[8] |
LI Q, ZHANG N, YANG Y, et al. High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2014, 30(29): 8965-8972. doi: 10.1021/la502033t
|
[9] |
WANG W, FANG J J, SHAO S F, et al. Compact and uniform TiO2@g-C3N4 core-shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics[J]. Applied Catalysis B: Environmental, 2017, 217: 57-64. doi: 10.1016/j.apcatb.2017.05.037
|
[10] |
KIM S, LEE J, SON Y, et al. Study of the dye adsorption kinetics ofMetal–organic frameworks in aqueous media[J]. Bulletin of the Korean Chemical Society, 2020, 41(8): 843-850. doi: 10.1002/bkcs.12076
|
[11] |
SINGH A, SINGH A K, LIU J Q, et al. Syntheses, design strategies, and photocatalytic charge dynamics of metal–organic frameworks (MOFs): A catalyzed photo-degradation approach towards organic dyes[J]. Catalysis Science & Technology, 2021, 11(12): 3946-3989.
|
[12] |
SINGH P, SHANDILYA P, RAIZADA P, et al. Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification[J]. Arabian Journal of Chemistry, 2020, 13(1): 3498-3520. doi: 10.1016/j.arabjc.2018.12.001
|
[13] |
LAI K C, LEE L Y, HIEW B Y Z, et al. Environmental application of three-dimensional graphene materials as adsorbents for dyes and heavy metals: Review on ice-templating method and adsorption mechanisms[J]. Journal of Environmental Sciences, 2019, 79: 174-199. doi: 10.1016/j.jes.2018.11.023
|
[14] |
ZUBAIR M, IHSANULLAH I, ABDUL AZIZ H, et al. Sustainable wastewater treatment by biochar/layered double hydroxide composites: Progress, challenges, and outlook[J]. Bioresource Technology, 2021, 319: 124128. doi: 10.1016/j.biortech.2020.124128
|
[15] |
KANG D J, YU X L, TONG S R, et al. Performance and mechanism of Mg/Fe layered double hydroxides for fluoride and arsenate removal from aqueous solution[J]. Chemical Engineering Journal, 2013, 228: 731-740. doi: 10.1016/j.cej.2013.05.041
|
[16] |
ZHU L L, SHEN D K, LUO K H. A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods[J]. Journal of Hazardous Materials, 2020, 389: 122102. doi: 10.1016/j.jhazmat.2020.122102
|
[17] |
HUANG N, ZHAI L P, XU H, et al. Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions[J]. Journal of the American Chemical Society, 2017, 139(6): 2428-2434. doi: 10.1021/jacs.6b12328
|
[18] |
CÔTÉ A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. doi: 10.1126/science.1120411
|
[19] |
PENG Y W, HU Z G, GAO Y J, et al. Synthesis of a sulfonated two-dimensional covalent organic framework as an efficient solid acid catalyst for biobased chemical conversion[J]. ChemSusChem, 2015, 8(19): 3208-3212. doi: 10.1002/cssc.201500755
|
[20] |
YU S B, LYU H, TIAN J, et al. A polycationic covalent organic framework: A robust adsorbent for anionic dye pollutants[J]. Polymer Chemistry, 2016, 7(20): 3392-3397. doi: 10.1039/C6PY00281A
|
[21] |
SKORJANC T, SHETTY D, GÁNDARA F, et al. Remarkably efficient removal of toxic bromate from drinking water with a porphyrin-viologen covalent organic framework[J]. Chemical Science, 2019, 11(3): 845-850.
|
[22] |
ASHRAF S, ZUO Y M, LI S, et al. Crystalline anionic germanate covalent organic framework for high CO2 selectivity and fast Li ion conduction[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2019, 25(59): 13479-13483.
|
[23] |
LI Z, LIU Z W, MU Z J, et al. Cationic covalent organic framework based all-solid-state electrolytes[J]. Materials Chemistry Frontiers, 2020, 4(4): 1164-1173. doi: 10.1039/C9QM00781D
|
[24] |
XIAO G J, LI W Q, CHEN T, et al. Application of electron-rich covalent organic frameworks COF-JLU25 for photocatalytic aerobic oxidative hydroxylation of arylboronic acids to phenols[J]. European Journal of Organic Chemistry, 2021, 2021(29): 3986-3991. doi: 10.1002/ejoc.202100173
|
[25] |
CHEN Y X, ZHANG M, ZHANG S Z, et al. Copper-decorated covalent organic framework as a heterogeneous photocatalyst for phosphorylation of terminal alkynes[J]. Green Chemistry, 2022, 24(10): 4071-4081. doi: 10.1039/D2GC00754A
|
[26] |
GUAN Q, ZHOU L L, LI W Y, et al. Covalent organic frameworks (COFs) for cancer therapeutics[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2020, 26(25): 5583-5591.
|
[27] |
MI Z, YANG P, WANG R, et al. Stable radical cation-containing covalent organic frameworks exhibiting remarkable structure-enhanced photothermal conversion[J]. Journal of the American Chemical Society, 2019, 141(36): 14433-14442. doi: 10.1021/jacs.9b07695
|
[28] |
FU Y, WU Y, CHEN S H, et al. Zwitterionic covalent organic frameworks: Attractive porous host for gas separation and anhydrous proton conduction[J]. ACS Nano, 2021, 15(12): 19743-19755. doi: 10.1021/acsnano.1c07178
|
[29] |
PENG Y W, XU G D, HU Z G, et al. Mechanoassisted synthesis of sulfonated covalent organic frameworks with high intrinsic proton conductivity[J]. ACS Applied Materials & Interfaces, 2016, 8(28): 18505-18512.
|
[30] |
CAMPBELL N L, CLOWES R, RITCHIE L K, et al. Rapid microwave synthesis and purification of porous covalent organic frameworks[J]. Chemistry of Materials, 2009, 21(2): 204-206. doi: 10.1021/cm802981m
|
[31] |
CHANDRA S, KUNDU T, DEY K, et al. Interplaying intrinsic and extrinsic proton conductivities in covalent organic frameworks[J]. Chemistry of Materials, 2016, 28(5): 1489-1494. doi: 10.1021/acs.chemmater.5b04947
|
[32] |
CHEN T F, LI B, HUANG W B, et al. Highly crystalline ionic covalent organic framework membrane for nanofiltration and charge-controlled organic pollutants removal[J]. Separation and Purification Technology, 2021, 256: 117787. doi: 10.1016/j.seppur.2020.117787
|
[33] |
YAN Y H, WU S M, IAN Y L, et al. Sulfonic Acid-functionalized Spherical Covalent Organic Framework with Ultrahigh Capacity for the Removal of Cationic Dyes[J]. Chemical Journal of Chinese Universities-Chinese 2021, 42: 956-964.
|
[34] |
MITRA S, KANDAMBETH S, BISWAL B P, et al. Self-exfoliated guanidinium-based ionic covalent organic nanosheets (iCONs)[J]. Journal of the American Chemical Society, 2016, 138(8): 2823-2828. doi: 10.1021/jacs.5b13533
|
[35] |
DA H J, YANG C X, YAN X P. Cationic covalent organic nanosheets for rapid and selective capture of perrhenate: An analogue of radioactive pertechnetate from aqueous solution[J]. Environmental Science & Technology, 2019, 53(9): 5212-5220.
|
[36] |
HAO M J, CHEN Z S, YANG H, et al. Pyridinium salt-based covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous 99TcO4−[J]. Science Bulletin, 2022, 67(9): 924-932. doi: 10.1016/j.scib.2022.02.012
|
[37] |
BUYUKCAKIR O, JE S H, TALAPANENI S N, et al. Charged covalent triazine frameworks for CO2 capture and conversion[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7209-7216.
|
[38] |
MA H P, LIU B L, LI B, et al. Cationic covalent organic frameworks: A simple platform of anionic exchange for porosity tuning and proton conduction[J]. Journal of the American Chemical Society, 2016, 138(18): 5897-5903. doi: 10.1021/jacs.5b13490
|
[39] |
DENG X L, ZHAO P Y, ZHOU X M, et al. Excellent sustained-release efficacy of herbicide quinclorac with cationic covalent organic frameworks[J]. Chemical Engineering Journal, 2021, 405: 126979. doi: 10.1016/j.cej.2020.126979
|
[40] |
LI Z L, LI H, GUAN X Y, et al. Three-dimensional ionic covalent organic frameworks for rapid, reversible, and selective ion exchange[J]. Journal of the American Chemical Society, 2017, 139(49): 17771-17774. doi: 10.1021/jacs.7b11283
|
[41] |
HU H, YAN Q Q, WANG M, et al. Ionic covalent organic frameworks for highly effective catalysis[J]. Chinese Journal of Catalysis, 2018, 39(9): 1437-1444. doi: 10.1016/S1872-2067(18)63065-7
|
[42] |
MU Z J, DING X S, CHEN Z Y, et al. Zwitterionic covalent organic frameworks as catalysts for hierarchical reduction of CO2 with amine and hydrosilane[J]. ACS Applied Materials & Interfaces, 2018, 10(48): 41350-41358.
|
[43] |
DONG B, WANG L Y, ZHAO S, et al. Immobilization of ionic liquids to covalent organic frameworks for catalyzing the formylation of amines with CO2 and phenylsilane[J]. Chemical Communications (Cambridge, England), 2016, 52(44): 7082-7085. doi: 10.1039/C6CC03058K
|
[44] |
LI P, CHEN J, TANG S K. Ionic liquid-impregnated covalent organic framework/silk nanofibril composite membrane for efficient proton conduction[J]. Chemical Engineering Journal, 2021, 415: 129021. doi: 10.1016/j.cej.2021.129021
|
[45] |
AIYAPPA H B, THOTE J, SHINDE D B, et al. Cobalt-modified covalent organic framework as a robust water oxidation electrocatalyst[J]. Chemistry of Materials, 2016, 28(12): 4375-4379. doi: 10.1021/acs.chemmater.6b01370
|
[46] |
LI Z, LIU Z W, LI Z Y, et al. Defective 2D covalent organic frameworks for postfunctionalization[J]. Advanced Functional Materials, 2020, 30(10): 1909267. doi: 10.1002/adfm.201909267
|
[47] |
DANG M, DENG Q L, TIAN Y Y, et al. Synthesis of anionic ionic liquids@TpBd-(SO3)2 for the selective adsorption of cationic dyes with superior capacity[J]. RSC Advances, 2020, 10(9): 5443-5453. doi: 10.1039/C9RA10035K
|
[48] |
DEY K, PAL M, ROUT K C, et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films[J]. Journal of the American Chemical Society, 2017, 139(37): 13083-13091. doi: 10.1021/jacs.7b06640
|
[49] |
JIANG W, CUI W R, LIANG R P, et al. Zwitterionic surface charge regulation in ionic covalent organic nanosheets: Synergistic adsorption of fluoroquinolone antibiotics[J]. Chemical Engineering Journal, 2021, 417: 128034. doi: 10.1016/j.cej.2020.128034
|
[50] |
LI Y, YANG C X, YAN X P. Controllable preparation of core-shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution[J]. Chemical Communications (Cambridge, England), 2017, 53(16): 2511-2514. doi: 10.1039/C6CC10188G
|
[51] |
LIU Z S, WANG H W, OU J J, et al. Construction of hierarchically porous monoliths from covalent organic frameworks (COFs) and their application for bisphenol A removal[J]. Journal of Hazardous Materials, 2018, 355: 145-153. doi: 10.1016/j.jhazmat.2018.05.022
|
[52] |
DA H J, YANG C X, QIAN H L, et al. A knot-linker planarity control strategy for constructing highly crystalline cationic covalent organic frameworks: Decoding the effect of crystallinity on adsorption performance[J]. Journal of Materials Chemistry A, 2020, 8(25): 12657-12664. doi: 10.1039/D0TA01037E
|
[53] |
WANG W, ZHOU Z M, SHAO H P, et al. Cationic covalent organic framework for efficient removal of PFOA substitutes from aqueous solution[J]. Chemical Engineering Journal, 2021, 412: 127509. doi: 10.1016/j.cej.2020.127509
|
[54] |
XIONG X H, YU Z W, GONG L L, et al. Ammoniating covalent organic framework (COF) for high-performance and selective extraction of toxic and radioactive uranium ions[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2019, 6(16): 1900547.
|
[55] |
LI Z Y, ZHU R M, ZHANG P L, et al. Functionalized polyarylether-based COFs for rapid and selective extraction of uranium from aqueous solution[J]. Chemical Engineering Journal, 2022, 434: 134623. doi: 10.1016/j.cej.2022.134623
|
[56] |
HE L W, LIU S T, CHEN L, et al. Mechanism unravelling for ultrafast and selective 99TcO4 - uptake by a radiation-resistant cationic covalent organic framework: A combined radiological experiment and molecular dynamics simulation study[J]. Chemical Science, 2019, 10(15): 4293-4305. doi: 10.1039/C9SC00172G
|
[57] |
LI J, DAI X, ZHU L, et al. 99TcO4− remediation by a cationic polymeric network[J]. Nature Communications, 2018, 9(1): 1-11. doi: 10.1038/s41467-017-02088-w
|
[58] |
LI J, CHEN L, SHEN N N, et al. Rational design of a cationic polymer network towards record high uptake of 99TcO4− in nuclear waste[J]. Science China Chemistry, 2021, 64(7): 1251-1260. doi: 10.1007/s11426-020-9962-9
|
[59] |
JIAO S S, DENG L M, ZHANG X H, et al. Evaluation of an ionic porous organic polymer for water remediation[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 39404-39413.
|
[60] |
LI P, DAMRON J T, BRYANTSEV V S, et al. Guanidinium-based ionic covalent-organic nanosheets for sequestration of Cr(Ⅵ) and As(V) oxoanions in water[J]. ACS Applied Nano Materials, 2021, 4(12): 13319-13328. doi: 10.1021/acsanm.1c02845
|
[61] |
ZHUANG X Q, HAO J, ZHENG X S, et al. High-performance adsorption of chromate by hydrazone-linked guanidinium-based ionic covalent organic frameworks: Selective ion exchange[J]. Separation and Purification Technology, 2021, 274: 118993. doi: 10.1016/j.seppur.2021.118993
|
[62] |
LI G L, YE J R, FANG Q L, et al. Amide-based covalent organic frameworks materials for efficient and recyclable removal of heavy metal lead (II)[J]. Chemical Engineering Journal, 2019, 370: 822-830. doi: 10.1016/j.cej.2019.03.260
|
[63] |
GUPTA K M, ZHANG K, JIANG J W. Efficient removal of Pb2+ from aqueous solution by an ionic covalent–organic framework: Molecular simulation study[J]. Industrial & Engineering Chemistry Research, 2018, 57(18): 6477-6482.
|
[64] |
LI Y, WANG C, MA S J, et al. Fabrication of hydrazone-linked covalent organic frameworks using alkyl amine as building block for high adsorption capacity of metal ions[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11706-11714.
|