[1] 宋文, 胡荣, 曾雯, 等. 机场航空器碳排放演化特征及影响因素分解[J]. 华东交通大学学报, 2022, 39(2): 53 − 61. doi: 10.3969/j.issn.1005-0523.2022.2.hdjtdxxb202202007
[2] 胡荣, 冯慧琳, 刘博文, 等. 点汇聚系统的航空器污染物减排效应与机理[J]. 交通运输系统工程与信息, 2021, 21(5): 165 − 173. doi: 10.16097/j.cnki.1009-6744.2021.05.016
[3] 暴佳伟. 基于ADS-B飞行数据的航程污染物排放模型研究[D]. 北京: 北京石油化工学院, 2022.
[4] 胡荣, 王德芸, 冯慧琳, 等. 碳达峰视角下的机场航空器碳排放预测[J]. 交通运输系统工程与信息, 2021, 21(6): 257 − 263. doi: 10.16097/j.cnki.1009-6744.2021.06.029
[5] ZHU C, HU R, LIU B, ET AL. Uncertainty and its driving factors of airport aircraft pollutant emissions assessment[J]. Transportation Research Part D: Transport and Environment, 2021, 94: 102791. doi: 10.1016/j.trd.2021.102791
[6] 王中凤燕, 田勇, 万莉莉, 等. 高空飞行的环境影响研究进展[J]. 环境保护科学, 2017, 43(03): 100 − 105. doi: 10.16803/j.cnki.issn.1004-6216.2017.03.018
[7] 黄梦圆, 胡荣, 张军峰, 等. 基于快速存取记录器数据的飞机废气排放计算与分析[J]. 科学技术与工程, 2020, 20(32): 13502 − 13507. doi: 10.3969/j.issn.1671-1815.2020.32.060
[8] YU N, 张梦雅, 张耀, 等. 航空器巡航阶段空气污染的排放和扩散[J]. 科学技术与工程, 2020, 20(34): 28281 − 28285. doi: 10.3969/j.issn.1671-1815.2020.34.058
[9] CHEN N Y, SRIDHAR B, NG H K. Tradeoff between contrail reduction and emissions in united states national airspace[J]. Journal of Aircraft, 2012, 49(5): 1367 − 1375. doi: 10.2514/1.C031680
[10] DUDA D P, MINNIS P, PALIKONDA R. Estimated contrail frequency and coverage over the contiguous united states from numerical weather prediction analyses and flight track data[J]. Meteorologische Zeitschrift, 2005, 14(14): 537 − 548.
[11] TEOH R, SCHUMANN U, STETTLER M. Beyond contrail avoidance: Efficacy of flight altitude changes to minimise contrail climate forcing[J]. Aerospace, 2020, 7(9): 121. doi: 10.3390/aerospace7090121
[12] LÁN S, HOSPODKA J. Contrail lifetime in context of used flight levels[J]. Sustainability, 2022, 14(23): 15877. doi: 10.3390/su142315877
[13] DISCHL R, KAUFMANN S, VOIGT C. Regional and seasonal dependence of the potential contrail cover and the potential contrail cirrus cover over Europe[J]. Aerospace, 2022, 9(9): 485. doi: 10.3390/aerospace9090485
[14] SIMORGH A, SOLER M, GONZÁLEZ-ARRIBAS D, et al. A comprehensive survey on climate optimal aircraft trajectory planning[J]. Aerospace, 2022, 9(3): 146. doi: 10.3390/aerospace9030146
[15] 王中凤燕. 航空器绿色轨迹优化研究[D]. 南京: 南京航空航天大学, 2017.
[16] SPANGENBERG D A, MINNIS P, BEDKA S T, et al. Contrail radiative forcing over the northern hemisphere from 2006 Aqua MODIS Data[J]. Geophysical Research Letters, 2013, 40(3): 595: 600.
[17] BOCK L, BURKHARDT U. Contrail cirrus radiative forcing for future air traffic[J]. Atmospheric Chemistry and Physics, 2019, 19(12): 8163 − 8174. doi: 10.5194/acp-19-8163-2019
[18] WANG Y, XING Y, YU X, et al. Flight operation and airframe design for tradeoff between cost and environmental impact[J]. Journal of Aerospace Engineering, 2018, 232(5): 973 − 987.
[19] 王中凤燕, 田勇, 万莉莉, 等. 基于降低温室效应的航空器运行策略[J]. 环境保护科学, 2016, 42(04): 126 − 132. doi: 10.16803/j.cnki.issn.1004-6216.2016.04.026
[20] 田勇, 万莉莉, 叶博嘉, 等. 基于降低温室效应的飞行高度层分配优化[J]. 西南交通大学学报, 2018, 53(02): 400 − 405. doi: 10.3969/j.issn.0258-2724.2018.02.025
[21] SRIDHAR B, CHEN N Y, NG H K. Aircraft trajectory design based on reducing the combined effects of carbon-dioxide, oxides of nitrogen and contrails[C]// AIAA Aviation: AIAA Modeling and Simulation Technologies Conference. American Institute of Aeronautics and Astronautics, 2014.
[22] 何修齐, 田勇, 王倩, 等. 基于递归算法的航空器高空飞行绿色轨迹优化[J]. 航空计算技术, 2020, 50(02): 32 − 36+40. doi: 10.3969/j.issn.1671-654X.2020.02.007
[23] MA L N, TIAN Y, YANG S T, et al. A scheme of sustainable trajectory optimization for aircraft cruise based on comprehensive social benefit[J]. Discrete Dynamics in Nature and Society, 2021: 1-15.
[24] TIAN Y, HE X Q, XU Y, et al. 4D trajectory optimization of commercial flight for green civil aviation[J]. IEEE Access, 2020, 8: 62815 − 62829. doi: 10.1109/ACCESS.2020.2984488
[25] MANEN J V, GREWE V. Algorithmic climate change functions for the use in eco-efficient flight planning[J]. Transportation Research Part D:Transport and Environment, 2019, 67: 388 − 405. doi: 10.1016/j.trd.2018.12.016
[26] DAHLMANN K, GREWE V, MATTHES S, et al. Climate assessment of single flights: deduction of route specific equivalent CO2 emissions[J]. International Journal of Sustainable Transportation, 2021, 1-12.
[27] CHAI X, YU X, WANG Y. Tradeoff study between cost and environmental impact of aircraft using simultaneous optimization of airframe and engine cycle[J]. International Journal of Aerospace Engineering, 2017, 1-10.
[28] HENDERSON R P, MARTINS J, PEREZ R E. Aircraft conceptual design for optimal environmental performance[J]. Aeronautical Journal, 2016, 116(1175): 1 − 22.
[29] GOLDBERG C, NALIANDA D, MACMANUS D, et al. Installed performance assessment of a boundary layer ingesting distributed propulsion system at design point[C]// 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Propulsion and Energy Forum, 2016.
[30] GOLDBERG C, NALIANDA D, SETHI V, et al. Assessment of an energy-efficient aircraft concept from a techno-economic perspective[J]. Applied Energy, 2018, 221: 229 − 238. doi: 10.1016/j.apenergy.2018.03.163
[31] BRAVO-MOSQUERA P D, CATALANO F M, ZINGG DW. Unconventional aircraft for civil aviation: A review of concepts and design methodologies[J]. Progress in Aerospace Sciences, 2022, 131: 1 − 43.
[32] 张伟清. 韩国科学家开发的新催化剂可使温室气体重新转化成燃料或氢气[J]. 石油炼制与化工, 2020(6): 41. doi: 10.3969/j.issn.1005-2399.2020.06.011
[33] Air Transport Action Group. Waypoint 2050[R]. Geneva: Switzerland, 2021.
[34] 李源, 雷涛, 王宏霞, 等. 电动飞机动力系统标准发展综述[J]. 航空标准化与质量, 2023(01): 1 − 5+49.
[35] 徐江荣, 宋奥, 洪佳璇, 等. 低碳背景下氢应用现状与前景展望[J]. 能源环境保护, 2023, 37(1): 65 − 73.
[36] 仲蕊. 可持续航空燃料发展前景广阔[N]. 中国能源报, 2022-11-07(009).
[37] PENG W, SRIDHAR B, CHEN N Y, et al. A linear programming approach to the development of contrail reduction strategies satisfying operationally feasible constraints[C]// AIAA Guidance, Navigation, and Control Conference. American Institute of Aeronautics and Astronautics, 2012.
[38] WOLF K, BELLOUIN N, BOUCHER O. Long-term upper-troposphere climatology of potential contrail occurrence over the Paris area derived from radiosonde observations[J]. Atmospheric Chemistry and Physics, 2023, 23(1): 287 − 309. doi: 10.5194/acp-23-287-2023
[39] 薛奥林. 结合气象的管型航路网络优化方法研究[D]. 南京: 南京航空航天大学, 2019.
[40] RAO P, YIN F, GREWE V, et al. Case study for testing the validity of nox-ozone algorithmic climate change functions for optimising flight trajectories[J]. Aerospace, 2022, 9(5): 231. doi: 10.3390/aerospace9050231
[41] ROSENOW J, LINDNER M, SCHEIDERER J. Advanced flight planning and the benefit of in-flight aircraft trajectory optimization[J]. Sustainability, 2021, 13(3): 1383. doi: 10.3390/su13031383
[42] AHMED K, BOUSSON K, COELHO M D F. A modified dynamic programming approach for 4d minimum fuel and emissions trajectory optimization[J]. Aerospace, 2021, 8(5): 135. doi: 10.3390/aerospace8050135
[43] GREWE V, FRÖMMING, C, MATTHES S, et al. Aircraft routing with minimal climate impact: The REACT4C climate cost function modelling approach (V1.0)[J]. Geoscientific Model Development, 2014, 7(1): 175 − 201. doi: 10.5194/gmd-7-175-2014
[44] ZENGERLING Z, LINKE F, WEDER C, et al. Climate-optimised intermediate stop operations: mitigation potential and differences from fuel-optimised configuration[J]. Applied Sciences, 2022, 12(23): 12499. doi: 10.3390/app122312499
[45] FICHTER C, MARQUART S, SAUSEN R, et al. The impact of cruise altitude on contrails and related radiative forcing[J]. Meteorologische Zeitschrift, 2005, 14(4): 563 − 572. doi: 10.1127/0941-2948/2005/0048