[1] |
YAO S J, YE J F, YANG Q, et al. Occurrence and removal of antibiotics, antibiotic resistance genes, and bacterial communities in hospital wastewater [J]. Environmental Science and Pollution Research, 2021, 28(40): 57321-57333. doi: 10.1007/s11356-021-14735-3
|
[2] |
蒋宝, 隋珊珊, 孙成一, 等. 北京市北运河水体中抗生素污染特征及风险评估 [J]. 环境科学, 2023, 44(6): 3198-3205.
|
[3] |
王若男, 曹阳, 高超, 等. 沱江干流抗生素污染的时空变化和生态风险评估 [J]. 环境化学, 2021, 40(8): 2505-2514. doi: 10.7524/j.issn.0254-6108.2021022003
|
[4] |
BENGTSSON-PALME J, JOAKIM LARSSON D G. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation [J]. Environment International, 2016, 86: 140-149. doi: 10.1016/j.envint.2015.10.015
|
[5] |
MITCHELL S M, ULLMAN J L, TEEL A L, et al. pH and temperature effects on the hydrolysis of three β-lactam antibiotics: Ampicillin, cefalotin and cefoxitin [J]. Science of the Total Environment, 2014, 466/467: 547-555. doi: 10.1016/j.scitotenv.2013.06.027
|
[6] |
ZHANG H Q, BAI J C, XUE W F, et al. Quantum chemical prediction of effects of temperature on hydrolysis rate of penicillin under weakly acidic condition [J]. Science of the Total Environment, 2022, 806: 150509. doi: 10.1016/j.scitotenv.2021.150509
|
[7] |
BLOTEVOGEL J, MAYENO A N, SALE T C, et al. Prediction of contaminant persistence in aqueous phase: A quantum chemical approach [J]. Environmental Science & Technology, 2011, 45(6): 2236-2242.
|
[8] |
ZHANG H Q, XIE H B, CHEN J W, et al. Prediction of hydrolysis pathways and kinetics for antibiotics under environmental pH conditions: A quantum chemical study on cephradine [J]. Environmental Science & Technology, 2015, 49(3): 1552-1558.
|
[9] |
CHEN J B, SUN P Z, ZHANG Y L, et al. Multiple roles of Cu(II) in catalyzing hydrolysis and oxidation of β-lactam antibiotics [J]. Environmental Science & Technology, 2016, 50(22): 12156-12165.
|
[10] |
SHENG F, LING J Y, WANG C, et al. Rapid hydrolysis of penicillin antibiotics mediated by adsorbed zinc on goethite surfaces [J]. Environmental Science & Technology, 2019, 53(18): 10705-10713.
|
[11] |
SHIN J, LEE S, PARK H, et al. Effects of thermal hydrolysis on anaerobic digestion and abundance of antibiotic resistance genes during recuperative thickening digestate treatment of sewage sludge [J]. Chemical Engineering Journal, 2022, 450: 138128. doi: 10.1016/j.cej.2022.138128
|
[12] |
李国傲, 孙成一, 雒梅, 等. 哌拉西林的解离常数测定及其在水溶液中的存在形态 [J]. 分析试验室, 2022, 41(10): 1121-1126.
|
[13] |
JAVAD I, AMIRHOSSIEN G, MOHSEN M, et al. Fast and effective adsorption of amoxicillin from aqueous solutions by L-methionine modified montmorillonite K10 [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020(prepublish): 125792.
|
[14] |
LÄNGIN A, ALEXY R, KÖNIG A, et al. Deactivation and transformation products in biodegradability testing of ß-lactams amoxicillin and piperacillin [J]. Chemosphere, 2009, 75(3): 347-354. doi: 10.1016/j.chemosphere.2008.12.032
|
[15] |
常祎卓. 基于分析目标(Analytic Target Profile)的理念探讨青霉素杂质谱分析方法的普适性[D]. 北京: 中国食品药品检定研究院, 2018.
|
[16] |
XIE Y, FENG M J, ZHANG M, et al. Kinetics model of piperacillin synthesis in a microreactor [J]. Chemical Engineering Science, 2022, 259: 117821. doi: 10.1016/j.ces.2022.117821
|