[1] |
CASSIDY E S, WEST P C, GERBER J S, et al. Redefining agricultural yields: From tonnes to people nourished per hectare [J]. Environmental Research Letters, 2013, 8(3): 034015. doi: 10.1088/1748-9326/8/3/034015
|
[2] |
JANSSON J K, HOFMOCKEL K S. Soil microbiomes and climate change [J]. Nature Reviews Microbiology, 2020, 18(1): 35-46. doi: 10.1038/s41579-019-0265-7
|
[3] |
CACHADA A, ROCHA-SANTOS T, DUARTE A C. An Introduction to the Main Issues [M]//Cachada A, Rocha-Santos T, Duarte AC. Soil Pollution: From Monitoring to Remediation. New York: Academic Press, 2018: 1-28.
|
[4] |
SUN J T, PAN L L, TSANG D C W, et al. Organic contamination and remediation in the agricultural soils of China: A critical review [J]. Science of the Total Environment, 2018, 615: 724-740. doi: 10.1016/j.scitotenv.2017.09.271
|
[5] |
CARRÉ F, CAUDEVILLE J, BONNARD R, et al. Soil contamination and human health: A major challenge for global soil security[M]//Field DJ, Morgan CLS, McBratney AB. Global Soil Security. Cham: Springer, 2017: 275-295.
|
[6] |
ZENG S Y, MA J, YANG Y J, et al. Spatial assessment of farmland soil pollution and its potential human health risks in China [J]. Science of the Total Environment, 2019, 687: 642-653. doi: 10.1016/j.scitotenv.2019.05.291
|
[7] |
RODRÍGUEZ N, PÉREZ A P. Status of local soil contamination in Europe European Commission[R]. 2018. .
|
[8] |
ZHAO F J, MA Y B, ZHU Y G, et al. Soil contamination in China: Current status and mitigation strategies [J]. Environmental Science & Technology, 2015, 49(2): 750-759.
|
[9] |
中国环境保护部, 中国国土资源部. 2014年全国土壤染污状况调查公报[R]. 2014
Ministry of Environmental Protection of China, Ministry of Land and Resources of China. 2014 National Soil Pollution Survey Bulletin [R]. 2014 (in Chinese).
|
[10] |
HU B F, JIA X L, HU J, et al. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China [J]. International Journal of Environmental Research and Public Health, 2017, 14(9): 1042. doi: 10.3390/ijerph14091042
|
[11] |
LIANG Z B, GAO L, ZHAO X F, et al. Assessment of metal pollution, its potential health risks, and origin in different land use types in Zhuhai city, China [J]. Archives of Environmental Contamination and Toxicology, 2019, 76(2): 295-307. doi: 10.1007/s00244-018-00590-w
|
[12] |
WU Y Y, XI X C, TANG X, et al. Policy distortions, farm size, and the overuse of agricultural chemicals in China [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(27): 7010-7015. doi: 10.1073/pnas.1806645115
|
[13] |
TILMAN D, BALZER C, HILL J, et al. Global food demand and the sustainable intensification of agriculture [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20260-20264. doi: 10.1073/pnas.1116437108
|
[14] |
KING A. Technology: The future of agriculture [J]. Nature, 2017, 544(7651): S21-S23. doi: 10.1038/544S21a
|
[15] |
FAO. The State of Food and Agriculture 2017. Food and Agriculture Organization[R]. 2017.
|
[16] |
GLASER B, LEHMANN J, ZECH W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review [J]. Biology and Fertility of Soils, 2002, 35(4): 219-230. doi: 10.1007/s00374-002-0466-4
|
[17] |
O'LAUGHLIN J, MCELLIGOTT K, Biochar for environmental management: Science and technology [M]. Place published: Earthscan, 2009: 535.
|
[18] |
EL-NAGGAR A, LEE S S, RINKLEBE J, et al. Biochar application to low fertility soils: A review of current status, and future prospects [J]. Geoderma, 2019, 337: 536-554. doi: 10.1016/j.geoderma.2018.09.034
|
[19] |
BIEDERMAN L A, HARPOLE W S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis [J]. GCB Bioenergy, 2013, 5(2): 202-214. doi: 10.1111/gcbb.12037
|
[20] |
刘强, 袁延飞, 刘一帆, 等. 生物炭对盐渍化土壤改良的研究进展 [J]. 地球科学进展, 2022, 37(10): 1005-1024. doi: 10.11867/j.issn.1001-8166.2022.050
LIU Q, YUAN Y F, LIU Y F, et al. Research progress: The application of biochar in the remediation of salt-affected soils [J]. Advances in Earth Science, 2022, 37(10): 1005-1024(in Chinese). doi: 10.11867/j.issn.1001-8166.2022.050
|
[21] |
王秀梅, 安毅, 秦莉, 等. 对比施用生物炭和肥料对土壤有效镉及酶活性的影响 [J]. 环境化学, 2018, 37(1): 67-74. doi: 10.7524/j.issn.0254-6108.2017050101
WANG X M, AN Y, QIN L, et al. Effects of different fertilizers on Cd bioavailability and enzyme activity in soil [J]. Environmental Chemistry, 2018, 37(1): 67-74(in Chinese). doi: 10.7524/j.issn.0254-6108.2017050101
|
[22] |
RIZWAN M, ALI S, QAYYUM M F, et al. Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: A critical review [J]. Environmental Science and Pollution Research, 2016, 23(3): 2230-2248. doi: 10.1007/s11356-015-5697-7
|
[23] |
IPPOLITO J A, BERRY C M, STRAWN D G, et al. Biochars reduce mine land soil bioavailable metals [J]. Journal of Environmental Quality, 2017, 46(2): 411-419. doi: 10.2134/jeq2016.10.0388
|
[24] |
KOŁTOWSKI M, HILBER I, BUCHELI T D, et al. Effect of steam activated biochar application to industrially contaminated soils on bioavailability of polycyclic aromatic hydrocarbons and ecotoxicity of soils [J]. Science of the Total Environment, 2016, 566/567: 1023-1031. doi: 10.1016/j.scitotenv.2016.05.114
|
[25] |
ZHOU B B, FENG Y F, WANG Y M, et al. Impact of hydrochar on rice paddy CH4 and N2O emissions: A comparative study with pyrochar [J]. Chemosphere, 2018, 204: 474-482. doi: 10.1016/j.chemosphere.2018.04.056
|
[26] |
FENG Y F, LI D T, SUN H J, et al. Wood vinegar and biochar co-application mitigates nitrous oxide and methane emissions from rice paddy soil: A two-year experiment [J]. Environmental Pollution, 2020, 267: 115403. doi: 10.1016/j.envpol.2020.115403
|
[27] |
COZZENS S, CORTES R, SOUMONNI O, et al. Nanotechnology and the millennium development goals: Water, energy, and agri-food [J]. Journal of Nanoparticle Research, 2013, 15(11): 2001. doi: 10.1007/s11051-013-2001-y
|
[28] |
RAMANAYAKA S, VITHANAGE M, ALESSI D S, et al. Nanobiochar: Production, properties, and multifunctional applications [J]. Environmental Science:Nano, 2020, 7(11): 3279-3302. doi: 10.1039/D0EN00486C
|
[29] |
van ZWIETEN L, KIMBER S, MORRIS S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility [J]. Plant and Soil, 2010, 327(1): 235-246.
|
[30] |
LIU Z G, QUEK A, KENT HOEKMAN S, et al. Production of solid biochar fuel from waste biomass by hydrothermal carbonization [J]. Fuel, 2013, 103: 943-949. doi: 10.1016/j.fuel.2012.07.069
|
[31] |
YU F, DENG S B, CHEN P, et al. Physical and chemical properties of bio-oils from microwave pyrolysis of corn stover [J]. Applied Biochemistry and Biotechnology, 2007, 137(1): 957-970.
|
[32] |
LIU B, RAJAGOPAL D. Life-cycle energy and climate benefits of energy recovery from wastes and biomass residues in the United States [J]. Nature Energy, 2019, 4(8): 700-708. doi: 10.1038/s41560-019-0430-2
|
[33] |
HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. ChemInform, 2006, 37(52): no.
|
[34] |
HU B, WANG K, WU L H, et al. Engineering carbon materials from the hydrothermal carbonization process of biomass [J]. Advanced Materials, 2010, 22(7): 813-828. doi: 10.1002/adma.200902812
|
[35] |
BASTA A H, FIERRO V, SAIED H, et al. Effect of deashing rice straws on their derived activated carbons produced by phosphoric acid activation [J]. Biomass and Bioenergy, 2011, 35(5): 1954-1959. doi: 10.1016/j.biombioe.2011.01.043
|
[36] |
BASTA A H, FIERRO V, EL-SAIED H, et al. 2-Steps KOH activation of rice straw: An efficient method for preparing high-performance activated carbons [J]. Bioresource Technology, 2009, 100(17): 3941-3947. doi: 10.1016/j.biortech.2009.02.028
|
[37] |
ZHAO L, CAO X D, MAŠEK O, et al. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures [J]. Journal of Hazardous Materials, 2013, 256/257: 1-9. doi: 10.1016/j.jhazmat.2013.04.015
|
[38] |
SHAHEEN S M, NIAZI N K, HASSAN N E, et al. Wood-based biochar for the removal of potentially toxic elements in water and wastewater: A critical review [J]. International Materials Reviews, 2019, 64(4): 216-247. doi: 10.1080/09506608.2018.1473096
|
[39] |
JIANG S S, NGUYEN T A H, RUDOLPH V, et al. Characterization of hard- and softwood biochars pyrolyzed at high temperature [J]. Environmental Geochemistry and Health, 2017, 39(2): 403-415. doi: 10.1007/s10653-016-9873-6
|
[40] |
YARGICOGLU E N, SADASIVAM B Y, REDDY K R, et al. Physical and chemical characterization of waste wood derived biochars [J]. Waste Management, 2015, 36: 256-268. doi: 10.1016/j.wasman.2014.10.029
|
[41] |
JAHIRUL M I, RASUL M, CHOWDHURY A, et al. Biofuels production through biomass pyrolysis—a technological review [J]. Energies, 2012, 5(12): 4952-5001. doi: 10.3390/en5124952
|
[42] |
ZHANG J S, WANG Q Q. Sustainable mechanisms of biochar derived from brewers' spent grain and sewage sludge for ammonia–nitrogen capture [J]. Journal of Cleaner Production, 2016, 112: 3927-3934. doi: 10.1016/j.jclepro.2015.07.096
|
[43] |
LENG L J, HUANG H J. An overview of the effect of pyrolysis process parameters on biochar stability [J]. Bioresource Technology, 2018, 270: 627-642. doi: 10.1016/j.biortech.2018.09.030
|
[44] |
WANG L W, OK Y S, TSANG D C W, et al. New trends in biochar pyrolysis and modification strategies: Feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment [J]. Soil Use and Management, 2020, 36(3): 358-386. doi: 10.1111/sum.12592
|
[45] |
SINGH B, SINGH B P, COWIE A L. Characterisation and evaluation of biochars for their application as a soil amendment [J]. Soil Research, 2010, 48(7): 516-525. doi: 10.1071/SR10058
|
[46] |
QIAN L B, CHEN B L. Dual role of biochars as adsorbents for aluminum: The effects of oxygen-containing organic components and the scattering of silicate particles [J]. Environmental Science & Technology, 2013, 47(15): 8759-8768.
|
[47] |
QIAN L B, ZHANG W Y, YAN J C, et al. Effective removal of heavy metal by biochar colloids under different pyrolysis temperatures [J]. Bioresource Technology, 2016, 206: 217-224. doi: 10.1016/j.biortech.2016.01.065
|
[48] |
SUN K, KANG M J, ZHANG Z Y, et al. Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene [J]. Environmental Science & Technology, 2013, 47(20): 11473-11481.
|
[49] |
GASKIN J W, STEINER C, HARRIS K, et al. Effect of low-temperature pyrolysis conditions on biochar for agricultural use [J]. Transactions of the ASABE, 2008, 51(6): 2061-2069. doi: 10.13031/2013.25409
|
[50] |
MULLEN C A, BOATENG A A, GOLDBERG N M, et al. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis [J]. Biomass and Bioenergy, 2010, 34(1): 67-74. doi: 10.1016/j.biombioe.2009.09.012
|
[51] |
UZOMA K C, INOUE M, ANDRY H, et al. Effect of cow manure biochar on maize productivity under sandy soil condition [J]. Soil Use and Management, 2011, 27(2): 205-212. doi: 10.1111/j.1475-2743.2011.00340.x
|
[52] |
XU X Y, ZHAO Y H, SIMA J K, et al. Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review [J]. Bioresource Technology, 2017, 241: 887-899. doi: 10.1016/j.biortech.2017.06.023
|
[53] |
AMINI S, GHADIRI H, CHEN C R, et al. Salt-affected soils, reclamation, carbon dynamics, and biochar: A review [J]. Journal of Soils and Sediments, 2016, 16(3): 939-953. doi: 10.1007/s11368-015-1293-1
|
[54] |
GUNES A, INAL A, SAHIN O, et al. Variations in mineral element concentrations of poultry manure biochar obtained at different pyrolysis temperatures, and their effects on crop growth and mineral nutrition [J]. Soil Use and Management, 2015, 31(4): 429-437. doi: 10.1111/sum.12205
|
[55] |
PIPERNO D R, RANERE A J, HOLST I, et al. Starch grain and phytolith evidence for early ninth millennium B. P. maize from the Central Balsas River Valley, Mexico [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(13): 5019-5024. doi: 10.1073/pnas.0812525106
|
[56] |
LI Z M, DELVAUX B. Phytolith-rich biochar: A potential Si fertilizer in desilicated soils [J]. GCB Bioenergy, 2019, 11(11): 1264-1282. doi: 10.1111/gcbb.12635
|
[57] |
COOKE J, LEISHMAN M R. Consistent alleviation of abiotic stress with silicon addition: A meta-analysis [J]. Functional Ecology, 2016, 30(8): 1340-1357. doi: 10.1111/1365-2435.12713
|
[58] |
SONG Z L, WANG H L, STRONG P J, et al. Increase of available soil silicon by Si-rich manure for sustainable rice production [J]. Agronomy for Sustainable Development, 2014, 34(4): 813-819. doi: 10.1007/s13593-013-0202-5
|
[59] |
RAMANAYAKA S, TSANG D C W, HOU D Y, et al. Green synthesis of graphitic nanobiochar for the removal of emerging contaminants in aqueous media [J]. The Science of the Total Environment, 2020, 706: 135725. doi: 10.1016/j.scitotenv.2019.135725
|
[60] |
YANG X, LIU J J, McGROUTHER K, et al. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil [J]. Environmental Science and Pollution Research, 2016, 23(2): 974-984. doi: 10.1007/s11356-015-4233-0
|
[61] |
CHEN H B, YANG X, GIELEN G, et al. Effect of biochars on the bioavailability of cadmium and di-(2-ethylhexyl) phthalate to Brassica chinensis L. in contaminated soils [J]. The Science of the Total Environment, 2019, 678: 43-52. doi: 10.1016/j.scitotenv.2019.04.417
|
[62] |
QU X L, FU H Y, MAO J D, et al. Chemical and structural properties of dissolved black carbon released from biochars [J]. Carbon, 2016, 96: 759-767. doi: 10.1016/j.carbon.2015.09.106
|
[63] |
SONG B Q, CHEN M, ZHAO L, et al. Physicochemical property and colloidal stability of micron- and nano-particle biochar derived from a variety of feedstock sources [J]. Science of the Total Environment, 2019, 661: 685-695. doi: 10.1016/j.scitotenv.2019.01.193
|
[64] |
LIAN F, XING B S. Black carbon (biochar) in water/soil environments: Molecular structure, sorption, stability, and potential risk [J]. Environmental Science & Technology, 2017, 51(23): 13517-13532.
|
[65] |
MENG Z W, HUANG S, XU T, et al. Transport and transformation of Cd between biochar and soil under combined dry-wet and freeze-thaw aging[J]. Environmental Pollution (Barking, Essex: 1987), 2020, 263(Pt B): 114449.
|
[66] |
QUAN G X, FAN Q Y, CUI L Q, et al. Simulated photocatalytic aging of biochar in soil ecosystem: Insight into organic carbon release, surface physicochemical properties and cadmium sorption [J]. Environmental Research, 2020, 183: 109241. doi: 10.1016/j.envres.2020.109241
|
[67] |
LIU G C, CHEN L, JIANG Z X, et al. Aging impacts of low molecular weight organic acids (LMWOAs) on furfural production residue-derived biochars: Porosity, functional properties, and inorganic minerals [J]. The Science of the Total Environment, 2017, 607/608: 1428-1436. doi: 10.1016/j.scitotenv.2017.07.046
|
[68] |
HUA Y, ZHENG X B, XUE L H, et al. Microbial aging of hydrochar as a way to increase cadmium ion adsorption capacity: Process and mechanism [J]. Bioresource Technology, 2020, 300: 122708. doi: 10.1016/j.biortech.2019.122708
|
[69] |
林庆毅, 姜存仓, 张梦阳. 生物炭老化后理化性质及微观结构的表征 [J]. 环境化学, 2017, 36(10): 2107-2114. doi: 10.7524/j.issn.0254-6108.2017021703
LIN Q Y, JIANG C C, ZHANG M Y. Characterization of the physical and chemical structures of biochar under simulated aging condition [J]. Environmental Chemistry, 2017, 36(10): 2107-2114(in Chinese). doi: 10.7524/j.issn.0254-6108.2017021703
|
[70] |
HALE S E, HANLEY K, LEHMANN J, et al. Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar [J]. Environmental Science & Technology, 2011, 45(24): 10445-10453.
|
[71] |
PADHYE L P. Influence of surface chemistry of carbon materials on their interactions with inorganic nitrogen contaminants in soil and water [J]. Chemosphere, 2017, 184: 532-547. doi: 10.1016/j.chemosphere.2017.06.021
|
[72] |
RODRÍGUEZ N, MCLAUGHLIN M, PENNOCK D. Soil pollution: A hidden reality[M]. Food and Agriculture Organization of the United Nations, 2018.
|
[73] |
NOVAK J, BUSSCHER W, LAIRD D, et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil [J]. Soil Science, 2009, 174: 105-112. doi: 10.1097/SS.0b013e3181981d9a
|
[74] |
YUAN J H, XU R K, ZHANG H. The forms of alkalis in the biochar produced from crop residues at different temperatures [J]. Bioresource Technology, 2011, 102(3): 3488-3497. doi: 10.1016/j.biortech.2010.11.018
|
[75] |
LEHMANN J, JOSEPH S. Biochar for environmental management: science, technology and implementation[M]. Second Edition.
|
[76] |
TONG X J, LI J Y, YUAN J H, et al. Adsorption of Cu(II) by biochars generated from three crop straws [J]. Chemical Engineering Journal, 2011, 172(2/3): 828-834.
|
[77] |
HASS A, GONZALEZ J M, LIMA I M, et al. Chicken manure biochar as Liming and nutrient source for acid Appalachian soil [J]. Journal of Environmental Quality, 2012, 41(4): 1096-1106. doi: 10.2134/jeq2011.0124
|
[78] |
ZHANG W H, MAO S Y, CHEN H, et al. Pb(II) and Cr(VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions [J]. Bioresource Technology, 2013, 147: 545-552. doi: 10.1016/j.biortech.2013.08.082
|
[79] |
CAO X D, MA L N, GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine [J]. Environmental Science & Technology, 2009, 43(9): 3285-3291.
|
[80] |
WANG Z Y, LIU G C, ZHENG H, et al. Investigating the mechanisms of biochar’s removal of lead from solution [J]. Bioresource Technology, 2015, 177: 308-317. doi: 10.1016/j.biortech.2014.11.077
|
[81] |
XU X Y, CAO X D, ZHAO L, et al. Interaction of organic and inorganic fractions of biochar with Pb(ii) ion: Further elucidation of mechanisms for Pb(ii) removal by biochar [J]. RSC Advances, 2014, 4(85): 44930-44937. doi: 10.1039/C4RA07303G
|
[82] |
MAHMOUD M E, ABOU-ALI S A A, ELWESHAHY S M T. Efficient and ultrafast removal of Cd(II) and Sm(III) from water by leaves of Cynara scolymus derived biochar [J]. Materials Research Bulletin, 2021, 141: 111334. doi: 10.1016/j.materresbull.2021.111334
|
[83] |
陈再明, 陈宝梁, 周丹丹. 水稻秸秆生物碳的结构特征及其对有机污染物的吸附性能 [J]. 环境科学学报, 2013, 33(1): 9-19. doi: 10.13671/j.hjkxxb.2013.01.005
CHEN Z M, CHEN B L, ZHOU D D. Composition and sorption properties of rice-straw derived biochars [J]. Acta Scientiae Circumstantiae, 2013, 33(1): 9-19(in Chinese). doi: 10.13671/j.hjkxxb.2013.01.005
|
[84] |
ZHAO J, ZHOU D D, ZHANG J, et al. The contrasting role of minerals in biochars in bisphenol A and sulfamethoxazole sorption [J]. Chemosphere, 2021, 264: 128490. doi: 10.1016/j.chemosphere.2020.128490
|
[85] |
SUN K, KEILUWEIT M, KLEBER M, et al. Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure [J]. Bioresource Technology, 2011, 102(21): 9897-9903. doi: 10.1016/j.biortech.2011.08.036
|
[86] |
KASOZI G N, ZIMMERMAN A R, NKEDI-KIZZA P, et al. Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars) [J]. Environmental Science & Technology, 2010, 44(16): 6189-6195.
|
[87] |
YAN L L, KONG L, QU Z, et al. Magnetic biochar decorated with ZnS nanocrytals for Pb (II) removal [J]. ACS Sustainable Chemistry & Engineering, 2015, 3(1): 125-132.
|
[88] |
GAN C, LIU Y G, TAN X F, et al. Effect of porous zinc–biochar nanocomposites on Cr(vi) adsorption from aqueous solution [J]. RSC Advances, 2015, 5(44): 35107-35115. doi: 10.1039/C5RA04416B
|
[89] |
LYU H H, GAO B, HE F, et al. Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms [J]. Environmental Pollution, 2018, 233: 54-63. doi: 10.1016/j.envpol.2017.10.037
|
[90] |
NAGHDI M, TAHERAN M, PULICHARLA R, et al. Pine-wood derived nanobiochar for removal of carbamazepine from aqueous media: Adsorption behavior and influential parameters [J]. Arabian Journal of Chemistry, 2019, 12(8): 5292-5301. doi: 10.1016/j.arabjc.2016.12.025
|
[91] |
CHENG C H, LEHMANN J, THIES J E, et al. Oxidation of black carbon by biotic and abiotic processes [J]. Organic Geochemistry, 2006, 37(11): 1477-1488. doi: 10.1016/j.orggeochem.2006.06.022
|
[92] |
QIAN L B, CHEN B L, HU D F. Effective alleviation of aluminum phytotoxicity by manure-derived biochar [J]. Environmental Science & Technology, 2013, 47(6): 2737-2745.
|
[93] |
SAMSURI A W, SADEGH-ZADEH F, SEH-BARDAN B J. Adsorption of As(III) and As(V) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk [J]. Journal of Environmental Chemical Engineering, 2013, 1(4): 981-988. doi: 10.1016/j.jece.2013.08.009
|
[94] |
MINORI U, WARTELLE LYNDA H, BODDU VEERA M. Sorption of triazine and organophosphorus pesticides on soil and biochar [J]. Journal of Agricultural and Food Chemistry, 2012, 60(12): 2989-97. doi: 10.1021/jf205110g
|
[95] |
ZHOU D, LIU D, GAO F X, et al. Effects of biochar-derived sewage sludge on heavy metal adsorption and immobilization in soils [J]. International Journal of Environmental Research and Public Health, 2017, 14(7): 681. doi: 10.3390/ijerph14070681
|
[96] |
CUI L Q, LI L Q, ZHANG A F, et al. Biochar amendment greatly reduces rice CD uptake in a contaminated paddy soil: A two-year field experiment [J]. Bioresources, 2011, 6(3): 2605-2618.
|
[97] |
PARK J H, CHOPPALA G K, BOLAN N S, et al. Biochar reduces the bioavailability and phytotoxicity of heavy metals [J]. Plant and Soil, 2011, 348(1): 439-451.
|
[98] |
AL-WABEL M I, USMAN A R A, EL-NAGGAR A H, et al. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants [J]. Saudi Journal of Biological Sciences, 2015, 22(4): 503-511. doi: 10.1016/j.sjbs.2014.12.003
|
[99] |
ANDERSON C R, CONDRON L M, CLOUGH T J, et al. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus [J]. Pedobiologia, 2011, 54(5/6): 309-320.
|
[100] |
WANG X B, SONG D L, LIANG G Q, et al. Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil [J]. Applied Soil Ecology, 2015, 96: 265-272. doi: 10.1016/j.apsoil.2015.08.018
|
[101] |
GU Y A, HOU Y G, HUANG D P, et al. Application of biochar reduces Ralstonia solanacearum infection via effects on pathogen chemotaxis, swarming motility, and root exudate adsorption [J]. Plant and Soil, 2017, 415(1): 269-281.
|
[102] |
WU H M, QIN X J, WU H M, et al. Biochar mediates microbial communities and their metabolic characteristics under continuous monoculture [J]. Chemosphere, 2020, 246: 125835. doi: 10.1016/j.chemosphere.2020.125835
|
[103] |
QIU Z, TANG J W, CHEN J H, et al. Remediation of cadmium-contaminated soil with biochar simultaneously improves biochar’s recalcitrance [J]. Environmental Pollution, 2020, 256: 113436. doi: 10.1016/j.envpol.2019.113436
|
[104] |
FAN Z X, ZHANG Q, LI M, et al. Removal behavior and mechanisms of Cd(II) by a novel MnS loaded functional biochar: Influence of oxygenation [J]. Journal of Cleaner Production, 2020, 256: 120672. doi: 10.1016/j.jclepro.2020.120672
|
[105] |
LYU H H, ZHAO H, TANG J C, et al. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite [J]. Chemosphere, 2018, 194: 360-369. doi: 10.1016/j.chemosphere.2017.11.182
|
[106] |
LYU H H, TANG J C, CUI M K, et al. Biochar/iron (BC/Fe) composites for soil and groundwater remediation: Synthesis, applications, and mechanisms [J]. Chemosphere, 2020, 246: 125609. doi: 10.1016/j.chemosphere.2019.125609
|
[107] |
WANG B, ZHU C, AI D, et al. Activation of persulfate by green nano-zero-valent iron-loaded biochar for the removal of p-nitrophenol: Performance, mechanism and variables effects [J]. Journal of Hazardous Materials, 2021, 417: 126106. doi: 10.1016/j.jhazmat.2021.126106
|
[108] |
YUE L, LIAN F, HAN Y, et al. The effect of biochar nanoparticles on rice plant growth and the uptake of heavy metals: Implications for agronomic benefits and potential risk [J]. Science of the Total Environment, 2019, 656: 9-18. doi: 10.1016/j.scitotenv.2018.11.364
|
[109] |
LIU W, LI Y L, FENG Y, et al. The effectiveness of nanobiochar for reducing phytotoxicity and improving soil remediation in cadmium-contaminated soil [J]. Scientific Reports, 2020, 10(1): 1-10. doi: 10.1038/s41598-019-56847-4
|
[110] |
PARK J H, CHO J S, OK Y S, et al. Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: Batch and column experiment [J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2015, 50(11): 1194-1204.
|
[111] |
XIAO J, HU R, CHEN G C. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II) [J]. Journal of Hazardous Materials, 2020, 387: 121980. doi: 10.1016/j.jhazmat.2019.121980
|
[112] |
WU C, LIU X G, WU X H, et al. Sorption, degradation and bioavailability of oxyfluorfen in biochar-amended soils [J]. Science of the Total Environment, 2019, 658: 87-94. doi: 10.1016/j.scitotenv.2018.12.059
|
[113] |
ZHANG P, SUN H W, MIN L J, et al. Biochars change the sorption and degradation of thiacloprid in soil: Insights into chemical and biological mechanisms [J]. Environmental Pollution, 2018, 236: 158-167. doi: 10.1016/j.envpol.2018.01.030
|
[114] |
MAHMOUD M E, EL-GHANAM A M, SAAD S R, et al. Promoted removal of metformin hydrochloride anti-diabetic drug from water by fabricated and modified nanobiochar from artichoke leaves [J]. Sustainable Chemistry and Pharmacy, 2020, 18: 100336. doi: 10.1016/j.scp.2020.100336
|
[115] |
RAMANAYAKA S, KUMAR M, ETAMPAWALA T, et al. Macro, colloidal and nanobiochar for oxytetracycline removal in synthetic hydrolyzed human urine [J]. Environmental Pollution, 2020, 267: 115683. doi: 10.1016/j.envpol.2020.115683
|
[116] |
LIU W J, JIANG H, YU H Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material [J]. Chemical Reviews, 2015, 115(22): 12251-12285. doi: 10.1021/acs.chemrev.5b00195
|
[117] |
HUANG J S, ZIMMERMAN A R, CHEN H, et al. Ball milled biochar effectively removes sulfamethoxazole and sulfapyridine antibiotics from water and wastewater [J]. Environmental Pollution, 2020, 258: 113809. doi: 10.1016/j.envpol.2019.113809
|
[118] |
FRENKEL O, JAISWAL A K, ELAD Y, et al. The effect of biochar on plant diseases: What should we learn while designing biochar substrates? [J]. Journal of Environmental Engineering and Landscape Management, 2017, 25(2): 105-113. doi: 10.3846/16486897.2017.1307202
|
[119] |
ELMER W H, PIGNATELLO J J. Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of Asparagus in replant soils [J]. Plant Disease, 2011, 95(8): 960-966. doi: 10.1094/PDIS-10-10-0741
|
[120] |
GRABER E R, FRENKEL O, JAISWAL A K, et al. How may biochar influence severity of diseases caused by soilborne pathogens? [J]. Carbon Management, 2014, 5(2): 169-183. doi: 10.1080/17583004.2014.913360
|
[121] |
孙晓艺, 王丹, 王萌, 等. 骨炭粉对Cd污染农田的修复效果与稳定性评价 [J]. 中国环境科学, 2020, 40(10): 4449-4456. doi: 10.3969/j.issn.1000-6923.2020.10.031
SUN X Y, WANG D, WANG M, et al. Remediation effect of bone charcoal on Cd polluted soil and its sustainability assessment under field condition [J]. China Environmental Science, 2020, 40(10): 4449-4456(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.10.031
|
[122] |
郭赛赛, 刘小妹, 陈宏坤, 等. 球磨生物炭的性质及其对大肠杆菌和金黄色葡萄球菌的毒性效应研究 [J]. 农业环境科学学报, 2019, 38(7): 1468-1475. doi: 10.11654/jaes.2018-1617
GUO S S, LIU X M, CHEN H K, et al. Properties of ball-milled biochar and its toxic effects on E. coli and S. aureus [J]. Journal of Agro-Environment Science, 2019, 38(7): 1468-1475(in Chinese). doi: 10.11654/jaes.2018-1617
|