[1] |
RAO X, SHENG C X, GUO Z W, et al. Corrosion behaviors of cylinder liner in marine diesel engine burning low sulfur fuel oil: An experimental and molecular dynamics simulation study [J]. Tribology International, 2022, 171: 107575. doi: 10.1016/j.triboint.2022.107575
|
[2] |
杨世知. 船用低硫燃油潜在风险不容忽视 [J]. 中国船检, 2020(9): 59-64. doi: 10.3969/j.issn.1009-2005.2020.09.016
YANG S Z. The potential risk of marine low sulfur fuel can not be ignored [J]. China Ship Survey, 2020(9): 59-64(in Chinese). doi: 10.3969/j.issn.1009-2005.2020.09.016
|
[3] |
QU J, TRUHAN J J, BLAU P J, et al. Scuffing transition diagrams for heavy duty diesel fuel injector materials in ultra low-sulfur fuel-lubricated environment [J]. Wear, 2005, 259(7/8/9/10/11/12): 1031-1040.
|
[4] |
BETHA R, RUSSELL L M, SANCHEZ K J, et al. Lower NOx but higher particle and black carbon emissions from renewable diesel compared to ultra low sulfur diesel in at-sea operations of a research vessel [J]. Aerosol Science and Technology, 2017, 51(2): 123-134. doi: 10.1080/02786826.2016.1238034
|
[5] |
徐峥, 胡晓和, 杨城. 浅谈船用主机使用低硫燃油面临的挑战与应对措施 [J]. 柴油机, 2020, 42(6): 59-63. doi: 10.3969/j.issn.1001-4357.2020.06.014
XU Z, HU X H, YANG C. Discussion on challenges and countermeasures of marine diesel engines running with low sulfur fuel [J]. Diesel Engine, 2020, 42(6): 59-63(in Chinese). doi: 10.3969/j.issn.1001-4357.2020.06.014
|
[6] |
BARRON M G, VIVIAN D N, HEINTZ R A, et al. Long-term ecological impacts from oil spills: Comparison of Exxon valdez, Hebei spirit, and deepwater horizon [J]. Environmental Science & Technology, 2020, 54(11): 6456-6467.
|
[7] |
王传远, 贺世杰, 李延太, 等. 中国海洋溢油污染现状及其生态影响研究 [J]. 海洋科学, 2009, 33(6): 57-60.
WANG C Y, HE S J, LI Y T, et al. Study on the state and ecological effect of spilled oil pollution in Chinese Coastal Waters [J]. Marine Sciences, 2009, 33(6): 57-60(in Chinese).
|
[8] |
LEWIS D. How Mauritius is cleaning up after major oil spill in biodiversity hotspot [J]. Nature, 2020, 585(7824): 172. doi: 10.1038/d41586-020-02446-7
|
[9] |
SEVESO D, LOUIS Y D, MONTANO S, et al. The Mauritius oil spill: What’s next? [J]. Pollutants, 2021, 1(1): 18-28. doi: 10.3390/pollutants1010003
|
[10] |
HANSEN B H, NORDTUG T, FARKAS J, et al. Toxicity and developmental effects of Arctic fuel oil types on early life stages of Atlantic cod (Gadus morhua) [J]. Aquatic Toxicology, 2021, 237: 105881. doi: 10.1016/j.aquatox.2021.105881
|
[11] |
JÖNANDER C, DAHLLÖF I. Short and long-term effects of low-sulphur fuels on marine zooplankton communities [J]. Aquatic Toxicology, 2020, 227: 105592. doi: 10.1016/j.aquatox.2020.105592
|
[12] |
JOYE S B. Deepwater horizon, 5 years on [J]. Science, 2015, 349(6248): 592-593. doi: 10.1126/science.aab4133
|
[13] |
TAKESHITA R, BURSIAN S J, COLEGROVE K M, et al. A review of the toxicology of oil in vertebrates: What we have learned following the Deepwater Horizon oil spill [J]. Journal of Toxicology and Environmental Health, Part B, 2021, 24(8): 355-394. doi: 10.1080/10937404.2021.1975182
|
[14] |
SHEN A L, TANG F H, XU W T, et al. Toxicity testing of crude oil and fuel oil using early life stages of the black porgy (Acanthopagrus schlegelii) [J]. Biology and Environment:Proceedings of the Royal Irish Academy, 2012, 112B(1): 35-41. doi: 10.1353/bae.2012.0037
|
[15] |
安伟, 郭鹏, 张庆范, 等. IMO2020限硫令下船用燃料油使用分析 [J]. 船海工程, 2021, 50(3): 135-137,146. doi: 10.3963/j.issn.1671-7953.2021.03.033
AN W, GUO P, ZHANG Q F, et al. Analysis on the use of marine fuel oil under IMO 2020 sulfur limitation regulation [J]. Ship & Ocean Engineering, 2021, 50(3): 135-137,146(in Chinese). doi: 10.3963/j.issn.1671-7953.2021.03.033
|
[16] |
王红星, 刘瑜. 船用超低硫重油的特性与应用分析 [J]. 世界海运, 2017, 40(8): 33-37. doi: 10.16176/j.cnki.21-1284.2017.08.007
WANG H X, LIU Y. Characteristics and application analysis of marine ultra-low sulfur heavy oil [J]. World Shipping, 2017, 40(8): 33-37(in Chinese). doi: 10.16176/j.cnki.21-1284.2017.08.007
|
[17] |
Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter: ASTM D4052-18a[S]. ASTM International, 2018.
|
[18] |
Standard Test Method for Pour Point of Petroleum Products: ASTM D97-17b[S]. ASTM International, 2017.
|
[19] |
Standard Test Methods for Flash-Point by Pensky-Martens Closed Cup Tester: ASTM D93-20[S]. ASTM International, 2020.
|
[20] |
Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity): ASTM D445-19a[S]. ASTM International, 2019.
|
[21] |
Standard Test Method for Sulfur in Petroleum and Petroleum Products by Energy Dispersive X-ray Fluorescence Spectrometry: ASTM D4294-16e1[S]. ASTM International, 2016.
|
[22] |
Standard Test Method for Determination of Asphaltenes (Heptane Insolubles) in Crude Petroleum and Petroleum Products: ASTM D6560-17[S]. ASTM International, 2017.
|
[23] |
Bitumen and bituminous binders - Determination of the paraffin wax content - Part 1: Method by distillation: German version EN 12606-1: 2015 [S]. 2015.
|
[24] |
AURAND D, G COELHO. Cooperative aquatic toxicity testing of dispersed oil and the "chemical response to oil spills: ecological research forum (CROSERF)" [R]. Lusby: Ecosystem Management & Associates, Inc. , 2005, 30-31.
|
[25] |
USEPA 8270E, Semi-volatile organic compounds by gas chromatography/mass spectrometry[S].
|
[26] |
USEPA 8260D, Volatile organic compounds by gas chromatography/mass spectrometry[S].
|
[27] |
USEPA 8015D, Nonhalogenated organics using GC/FID[S].
|
[28] |
Organization for economic co-operation and development. OECD guidelines for the testing of chemicals. section 2: effects on biotic systems test No. 236: fish embryo acute toxicity (FET) test[M]. Paris: OECD Publishing, 2013. 22.
|
[29] |
YU T Y, JIANG Y, LIN S J. A 3-dimensional (3D)-printed template for high throughput zebrafish embryo arraying [J]. Journal of Visualized Experiments:JoVE, 2018(136): 57892.
|
[30] |
HERMSEN S A B, van den BRANDHOF E J, van der VEN L T M, et al. Relative embryotoxicity of two classes of chemicals in a modified zebrafish embryotoxicity test and comparison with their in vivo potencies [J]. Toxicology in Vitro, 2011, 25(3): 745-753. doi: 10.1016/j.tiv.2011.01.005
|
[31] |
BEEKHUIJZEN M, de KONING C, FLORES-GUILLÉN M E, et al. From cutting edge to guideline: A first step in harmonization of the zebrafish embryotoxicity test (ZET) by describing the most optimal test conditions and morphology scoring system [J]. Reproductive Toxicology, 2015, 56: 64-76. doi: 10.1016/j.reprotox.2015.06.050
|
[32] |
梁靖雨, 姜越, 董公卿, 等. 一种基于DeepLabV3Plus的斑马鱼形态学评分方法: CN113361353A[P]. 2021-09-07.
LIANG J Y, JIANG Y, DONG G Q, et al. Zebrafish morphological scoring method based on DeepLabV3Plus: CN113361353A[P]. 2021-09-07(in Chinese).
|
[33] |
MCCARTY L S. The relationship between aquatic toxicity QSARs and bioconcentration for some organic chemicals [J]. Environmental Toxicology and Chemistry, 1986, 5(12): 1071-1080. doi: 10.1002/etc.5620051207
|
[34] |
McCARTY L S, MACKAY D. Enhancing ecotoxicological modeling and assessment body residues and modes of toxic action [J]. Environmental Science & Technology, 1993, 27(9): 1718-1728.
|
[35] |
McCARTY L S, DIXON D G, MacKAY D, et al. Residue-based interpretation of toxicity and bioconcentration QSARs from aquatic bioassays: Neutral narcotic organics [J]. Environmental Toxicology and Chemistry, 1992, 11(7): 917-930. doi: 10.1002/etc.5620110705
|
[36] |
MCCARTY L S, MACKAY D, SMITH A D, et al. Residue-based interpretation of toxicity and bioconcentration QSARs from aquatic bioassays: Polar narcotic organics [J]. Ecotoxicology and Environmental Safety, 1993, 25(3): 253-270. doi: 10.1006/eesa.1993.1024
|
[37] |
NEFF J M. Bioaccumulation in marine organisms: Effect of contaminants from oil well produced water[M]. Amsterdam: Elsevier, 2002
|
[38] |
UHLER A D, STOUT S A, DOUGLAS G S, et al. Chemical character of marine heavy fuel oils and lubricants//Standard Handbook Oil Spill Environmental Forensics[M]. Boston: Academic Press, 2016: 641-683.
|
[39] |
李元钟. 低硫燃油对燃烧特性和环境的影响 [J]. 船舶工业技术经济信息, 1994(10): 26-27.
LI Y Z. Influence of low sulfur fuel on combustion characteristics and environment [J]. Technology and Economy Information of Ship Bulldings Industry, 1994(10): 26-27(in Chinese).
|
[40] |
PHILIBERT D A, LYONS D, PHILIBERT C, et al. Field-collected crude oil, weathered oil and dispersants differentially affect the early life stages of freshwater and saltwater fishes [J]. Science of the Total Environment, 2019, 647: 1148-1157. doi: 10.1016/j.scitotenv.2018.08.052
|
[41] |
PHILIBERT D A, PHILIBERT C P, LEWIS C, et al. Comparison of diluted bitumen (dilbit) and conventional crude oil toxicity to developing zebrafish [J]. Environmental Science & Technology, 2016, 50(11): 6091-6098.
|
[42] |
LI X S, XIONG D Q, DING G H, et al. Exposure to water-accommodated fractions of two different crude oils alters morphology, cardiac function and swim bladder development in early-life stages of zebrafish [J]. Chemosphere, 2019, 235: 423-433. doi: 10.1016/j.chemosphere.2019.06.199
|
[43] |
JOHANN S, NÜßER L, GOßEN M, et al. Differences in biomarker and behavioral responses to native and chemically dispersed crude and refined fossil oils in zebrafish early life stages [J]. Science of the Total Environment, 2020, 709: 136174. doi: 10.1016/j.scitotenv.2019.136174
|
[44] |
魏复盛. 国家环境保护总局, 水和废水监测分析方法编委会编. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
WEI F S. State Environmental Protection Administration. Analysis methods for water and wastewater (4th edition) [M]. Beijing: China Environmental Science Press, 2002(in Chinese).
|
[45] |
INCARDONA J P. Molecular mechanisms of crude oil developmental toxicity in fish [J]. Archives of Environmental Contamination and Toxicology, 2017, 73(1): 19-32. doi: 10.1007/s00244-017-0381-1
|
[46] |
Di TORO D M, McGRATH J A, STUBBLEFIELD W A. Predicting the toxicity of neat and weathered crude oil: Toxic potential and the toxicity of saturated mixtures [J]. Environmental Toxicology and Chemistry, 2007, 26(1): 24-36. doi: 10.1897/06174R.1
|
[47] |
LI X S, DING G H, XIONG Y J, et al. Toxicity of water-accommodated fractions (WAF), chemically enhanced WAF (CEWAF) of Oman crude oil and dispersant to early-life stages of zebrafish (Danio rerio) [J]. Bulletin of Environmental Contamination and Toxicology, 2018, 101(3): 314-319. doi: 10.1007/s00128-018-2413-6
|
[48] |
ELFAWY H A, ANUPRIYA S, MOHANTY S, et al. Molecular toxicity of Benzo(a)pyrene mediated by elicited oxidative stress infer skeletal deformities and apoptosis in embryonic zebrafish [J]. The Science of the Total Environment, 2021, 789: 147989. doi: 10.1016/j.scitotenv.2021.147989
|
[49] |
MAISANO M, CAPPELLO T, NATALOTTO A, et al. Effects of petrochemical contamination on caged marine mussels using a multi-biomarker approach: Histological changes, neurotoxicity and hypoxic stress [J]. Marine Environmental Research, 2017, 128: 114-123. doi: 10.1016/j.marenvres.2016.03.008
|
[50] |
SANO K, INOHAYA K, KAWAGUCHI M, et al. Purification and characterization of zebrafish hatching enzyme - an evolutionary aspect of the mechanism of egg envelope digestion [J]. The FEBS Journal, 2008, 275(23): 5934-5946. doi: 10.1111/j.1742-4658.2008.06722.x
|
[51] |
DRAPEAU P, SAINT-AMANT L, BUSS R R, et al. Development of the locomotor network in zebrafish [J]. Progress in Neurobiology, 2002, 68(2): 85-111. doi: 10.1016/S0301-0082(02)00075-8
|
[52] |
EVERITT S, FUJITA K K, MacPHERSON S, et al. Toxicity of weathered sediment-bound dilbit to early life stages of zebrafish (Danio rerio) [J]. Environmental Science & Technology, 2021, 55(3): 1721-1729.
|
[53] |
BRETTE F, MACHADO B, CROS C, et al. Crude oil impairs cardiac excitation-contraction coupling in fish [J]. Science, 2014, 343(6172): 772-776. doi: 10.1126/science.1242747
|
[54] |
BARRON M G, CARLS M G, HEINTZ R, et al. Evaluation of fish early life-stage toxicity models of chronic embryonic exposures to complex polycyclic aromatic hydrocarbon mixtures [J]. Toxicological Sciences, 2004, 78(1): 60-67. doi: 10.1093/toxsci/kfh051
|
[55] |
LUSHCHAK V I. Environmentally induced oxidative stress in aquatic animals [J]. Aquatic Toxicology, 2011, 101(1): 13-30. doi: 10.1016/j.aquatox.2010.10.006
|
[56] |
高惠滢, 胡薇. 生物体的抗氧化酶系统概述 [J]. 生物学教学, 2018, 43(10): 3-5. doi: 10.3969/j.issn.1004-7549.2018.10.002
GAO H Y, HU W. An overview of the antioxidant enzyme system in organisms [J]. Biology Teaching, 2018, 43(10): 3-5(in Chinese). doi: 10.3969/j.issn.1004-7549.2018.10.002
|
[57] |
REGOLI F, FRENZILLI G, BOCCHETTI R, et al. Time-course variations of oxyradical metabolism, DNA integrity and lysosomal stability in mussels, Mytilus galloprovincialis, during a field translocation experiment [J]. Aquatic Toxicology, 2004, 68(2): 167-178. doi: 10.1016/j.aquatox.2004.03.011
|
[58] |
DEMIGUEL-JIMÉNEZ L, ETXEBARRIA N, LEKUBE X, et al. Influence of dispersant application on the toxicity to sea urchin embryos of crude and bunker oils representative of prospective oil spill threats in Arctic and Sub-Arctic Seas [J]. Marine Pollution Bulletin, 2021, 172: 112922. doi: 10.1016/j.marpolbul.2021.112922
|
[59] |
PAGE D S, BOEHM P D, STUBBLEFIELD W A, et al. Hydrocarbon composition and toxicity of sediments following the Exxon Valdez oil spill in Prince William Sound, Alaska, USA [J]. Environmental Toxicology and Chemistry, 2002, 21(7): 1438-1450. doi: 10.1002/etc.5620210715
|
[60] |
李丽娜. 燃料油脱硫技术的研究进展 [J]. 精细石油化工进展, 2022, 23(2): 48-54. doi: 10.13534/j.cnki.32-1601/te.2022.02.010
LI L N. A review of the research progress in desulfurization technology for fuel oil [J]. Advances in Fine Petrochemicals, 2022, 23(2): 48-54(in Chinese). doi: 10.13534/j.cnki.32-1601/te.2022.02.010
|
[61] |
SMITH J N, GAITHER K A, PANDE P. Competitive metabolism of polycyclic aromatic hydrocarbons (PAHs): An assessment using in vitro metabolism and physiologically based pharmacokinetic (PBPK) modeling [J]. International Journal of Environmental Research and Public Health, 2022, 19(14): 8266. doi: 10.3390/ijerph19148266
|
[62] |
NICHOLS J W, LADD M A, HOFFMAN A D, et al. Biotransformation of polycyclic aromatic hydrocarbons by trout liver S9 fractions: Evaluation of competitive inhibition using a substrate depletion approach [J]. Environmental Toxicology and Chemistry, 2019, 38(12): 2729-2739. doi: 10.1002/etc.4595
|
[63] |
STRINGFELLOW W T, AITKEN M D. Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading pseudomonads [J]. Applied and Environmental Microbiology, 1995, 61(1): 357-362. doi: 10.1128/aem.61.1.357-362.1995
|
[64] |
BICHEREL P, THOMAS P C. Aquatic toxicity calculation of mixtures: A chemical activity approach incorporating a bioavailability reduction concept [J]. Environmental Science & Technology, 2021, 55(16): 11183-11191.
|
[65] |
SCHMIDT S N, HOLMSTRUP M, SMITH K E C, et al. Passive dosing of polycyclic aromatic hydrocarbon (PAH) mixtures to terrestrial springtails: Linking mixture toxicity to chemical activities, equilibrium lipid concentrations, and toxic units [J]. Environmental Science & Technology, 2013, 47(13): 7020-7027.
|