[1] |
JI Z Y, CHEN Y G. Using sludge fermentation liquid to improve wastewater short-cut nitrification-denitrification and denitrifying phosphorus removal via nitrite[J]. Environmental Science & Technology, 2010, 44(23): 8957-8963.
|
[2] |
GUO J H, Ni B J, Han X Y, et al. Unraveling microbial structure and diversity of activated sludge in a full-scale simultaneous nitrogen and phosphorus removal plant using metagenomic sequencing[J]. Enzyme and Microbial Technology, 2017, 102: 16-25. doi: 10.1016/j.enzmictec.2017.03.009
|
[3] |
缪新年, 程诚, 朱琳, 等. 短程硝化和反硝化除磷耦合工艺研究进展[J]. 水处理技术, 2020, 46(12): 12-16.
|
[4] |
VALVE M, RANTANEN P, KALLIO J. Enhancing biological phosphorus removal from municipal wastewater with partial simultaneous precipitation[J]. Water Science and Technology, 2002, 46(4-5): 249-255. doi: 10.2166/wst.2002.0598
|
[5] |
OEHMEN A, LEMOS P C, CARVALHO G, et al. Advances in enhanced biological phosphorus removal: from micro to macro scale[J]. Water Research, 2007, 41(11): 2271-2300. doi: 10.1016/j.watres.2007.02.030
|
[6] |
ZENG W, LI L, YANG Y Y, et al. Denitrifying phosphorus removal and impact of nitrite accumulation on phosphorus removal in a continuous anaerobic-anoxic-aerobic (A2O) process treating domestic wastewater[J]. Enzyme and Microbial Technology, 2011, 48(2): 134-142. doi: 10.1016/j.enzmictec.2010.10.010
|
[7] |
MA Y, PENG Y Z, WANG X L. Improving nutrient removal of the AAO process by an influent bypass flow by denitrifying phosphorus removal[J]. Desalination, 2009, 246(1-3): 534-544. doi: 10.1016/j.desal.2008.04.061
|
[8] |
王文琪, 李冬, 高鑫, 等. 不同好氧/缺氧时长联合分区排泥优化生活污水短程硝化反硝化除磷颗粒系统运行[J]. 环境科学, 2021, 42(9): 4406-4413.
|
[9] |
王启镔, 李浩, 董旭, 等. 改良型A2/O污水处理厂的工艺优化调控方案及其对同步脱氮除磷效率的提升[J]. 环境工程学报, 2022, 16(2): 659-665.
|
[10] |
吕亮, 尤雯, 张敏, 等. 硝化液回流比对ABR-MBR工艺反硝化除磷效能的影响[J]. 环境科学, 2018, 39(3): 1309-1315.
|
[11] |
KUBA, T, VAN LOOSDRECHT, M. C. M, HEIJNEN, J. J. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system[J]. Water Research, 1996, 30(7): 1702-1710. doi: 10.1016/0043-1354(96)00050-4
|
[12] |
DAI H L, CHEN W L, DAI Z Q, et al. Efficient model calibration method based on phase experiments for anaerobic-anoxic/nitrifying (A2N) two-sludge process[J]. Environmental Science and Pollution Research, 2017, 24(23): 19211-19222. doi: 10.1007/s11356-017-9437-z
|
[13] |
卞晓峥, 闫阁, 黄健平, 等. 双污泥系统反硝化除磷新工艺研究进展[J]. 水处理技术, 2021, 47(7): 19-24.
|
[14] |
张淼, 彭永臻, 张建华, 等. 进水C/N对A2/O-BCO工艺反硝化除磷特性的影响[J]. 中国环境科学, 2016, 36(5): 1366-1375.
|
[15] |
CHEN P, Wu JUNKANG, Lu X. Denitrifying phosphorus removal and microbial community characteristics of two-sludge DEPHANOX system: Effects of COD/TP ratio[J]. Biochemical Engineering Journal, 2021, 172: 108059. doi: 10.1016/j.bej.2021.108059
|
[16] |
SALEM S, BERENDS D H J G, HEIJNEN J J, et al. Bio-augmentation by nitrification with return sludge[J]. Water Research, 2003, 37(8): 1794-1804. doi: 10.1016/S0043-1354(02)00550-X
|
[17] |
王启镔, 苑泉, 宫徽, 等. SBR系统在低浓度污水条件下培养好氧颗粒污泥的特性及微生物分析[J]. 环境工程学报, 2018, 12(11): 3043-3052.
|
[18] |
HU J Y, ONG S L, NG W J, et al. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors[J]. Water Research, 2003, 37(14): 3463-3471. doi: 10.1016/S0043-1354(03)00205-7
|
[19] |
PODEDWORNA J, ŻUBROWSKA-SUDOŁ M. Nitrogen and phosphorus removal in a denitrifying phosphorus removal process in a sequencing batch reactor with a forced anoxic phase[J]. Environmental Technology, 2012, 33(2): 237-245. doi: 10.1080/09593330.2011.563428
|
[20] |
ZHOU Y, PIJUAN M, YUAN Z G. Free nitrous acid inhibition on anoxic phosphorus uptake and denitrification by poly-phosphate accumulating organisms[J]. Biotechnology and Bioengineering, 2007, 98(4): 903-912. doi: 10.1002/bit.21458
|
[21] |
PENG Y Z, WU C Y, WANG R D, et al. Denitrifying phosphorus removal with nitrite by a real-time step feed sequencing batch reactor[J]. Journal of Chemical Technology and Biotechnology, 2011, 86(4): 541-546. doi: 10.1002/jctb.2548
|
[22] |
韦佳敏, 沈耀良, 黄慧敏, 等. 基质浓度对ABR-MBR短程反硝化除磷工艺效能的影响[J]. 环境工程学报, 2021, 15(3): 939-945.
|
[23] |
WANG Y Y, GUO Gang, WANG Hong. Long-term impact of anaerobic reaction time on the performance and granular characteristics of granular denitrifying biological phosphorus removal systems[J]. Water Research, 2013, 47: 5326-5337. doi: 10.1016/j.watres.2013.06.013
|
[24] |
KIM J M, LEE H J, LEE D S, et al. Characterization of the denitrification-associated phosphorus uptake properties of "Candidatus Accumulibacter phosphatis" clades in sludge subjected to enhanced biological phosphorus[J]. Applied and Environmental Microbiology, 2013, 79(6): 1969-1979. doi: 10.1128/AEM.03464-12
|
[25] |
HAN Y H, ZHAN W X, LU W X, et al. Co-immobilization of Pseudomonas stutzeri YHA-13 and Alcaligenes sp. ZGED-12 with polyvinyl alcohol–alginate for removal of nitrogen and phosphorus from synthetic wastewater[J]. Environmental Technology, 2014, 35(22): 2813-2820. doi: 10.1080/09593330.2014.923516
|
[26] |
ZHAO W H, BI X J, PENG Y Z, et al. Research advances of the phosphorus-accumulating organisms of Candidatus Accumulibacter, Dechloromonas and Tetrasphaera: Metabolic mechanisms, applications and influencing factors[J]. Chemosphere, 2022, 307: 135675. doi: 10.1016/j.chemosphere.2022.135675
|
[27] |
连丽丽. 聚磷菌的筛选及其对污水的除磷特性研究[D]. 辽宁: 辽宁师范大学, 2009.
|
[28] |
温馨. 低氨氮废水SNAD-DPR协同处理技术与微生物作用机制研究[D]. 重庆: 重庆大学, 2018.
|
[29] |
YAO R D, YUAN Q, WANG K J. Enrichment of denitrifying bacterial community using nitrite as an electron acceptor for nitrogen removal from wastewater[J]. Water, 2020, 12(1): 48.
|
[30] |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
[31] |
RONG Y, LIU X C, WEN L J, et al. Advanced nutrient removal in a continuous A2/O process based on partial nitrifification-anammox and denitrifying phosphorus removal[J]. Journal of Water Process Engineering, 2020, 36: 101245. doi: 10.1016/j.jwpe.2020.101245
|
[32] |
CARVALHO G, LEMOS P C, OEHMEN A, et al. Denitrifying phosphorus removal: Linking the process performance with the microbial community structure[J]. Water Research, 2007, 41(19): 4383-4396. doi: 10.1016/j.watres.2007.06.065
|
[33] |
马小茜, 张哲, 刘超, 等. 生活垃圾焚烧厂渗沥液厌氧氨氧化脱氮效能及微生物机理分析[J]. 环境工程, 2021, 39(11): 110-118.
|
[34] |
YU W J, LAWRENCE N C, SOOKSA-NGUAN T, et al. Microbial linkages to soil biogeochemical processes in a poorly drained agricultural ecosystem[J]. Soil Biology and Biochemistry, 2021, 156: 108228. doi: 10.1016/j.soilbio.2021.108228
|
[35] |
周石磊, 黄廷林, 白士远, 等. 贫营养好氧反硝化菌的分离鉴定及其脱氮特性[J]. 中国环境科学. 2016, 36(1): 238-248.
|
[36] |
YANG Z C, ZHOU Q, SUN H M, et al. Metagenomic analyses of microbial structure and metabolic pathway in solid-phase denitrification systems for advanced nitrogen removal of wastewater treatment plant effluent: A pilot-scale study[J]. Water Research, 2021, 196: 117067. doi: 10.1016/j.watres.2021.117067
|
[37] |
LIU Y, TAY J H. State of the art of biogranulation technology for wastewater treatment[J]. Biotechnology Advances, 2004, 22(7): 533-563. doi: 10.1016/j.biotechadv.2004.05.001
|
[38] |
QIN L, TAY J H, LIU Y. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors[J]. Process Biochemistry, 2004, 39(5): 579-584. doi: 10.1016/S0032-9592(03)00125-0
|
[39] |
LETTINGA G, VELSEN A F M, HOBMA S W, et al. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment[J]. Biotechnology and Bioengineering, 1980, 22(4): 699-734. doi: 10.1002/bit.260220402
|
[40] |
吴越, 赵传峰, 孙法文, 等. 双区沉淀池用于连续流好氧颗粒污泥工艺的可行性[J]. 中国给水排水, 2020, 36(19): 9-15.
|
[41] |
姚仁达. 氨氧化和硝化细菌菌群筛选与富集培养及其固定化研究[D]. 北京: 北京工业大学, 2017.
|