[1] |
ZHANG M, HAN F, CHEN H, et al. The effect of salinity on ammonium-assimilating biosystems in hypersaline wastewater treatment[J]. Science of the Total Environment, 2022, 829: 154622. doi: 10.1016/j.scitotenv.2022.154622
|
[2] |
VO H N P, NGO H H, GUO W, et al. Microalgae for saline wastewater treatment: a critical review[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(12): 1224-1265. doi: 10.1080/10643389.2019.1656510
|
[3] |
齐泮晴, 于德爽, 李津, 等. 盐度对厌氧氨氧化工艺处理含海水污水脱氮特性的影响[J]. 中国环境科学, 2016, 36(5): 1392-1399. doi: 10.3969/j.issn.1000-6923.2016.05.017
|
[4] |
ZHANG S, SU J, ZHENG Z, et al. Denitrification strategies of strain YSF15 in response to carbon scarcity: Based on organic nitrogen, soluble microbial products and extracellular polymeric substances[J]. Bioresource Technology, 2020, 314: 123733. doi: 10.1016/j.biortech.2020.123733
|
[5] |
REZVANI F, SARRAFZADEH M-H, EBRAHIMI S, et al. Nitrate removal from drinking water with a focus on biological methods: a review[J]. Environmental Science and Pollution Research, 2019, 26(2): 1124-1141. doi: 10.1007/s11356-017-9185-0
|
[6] |
ZHAO J, FENG L, YANG G, et al. Development of simultaneous nitrification-denitrification (SND) in biofilm reactors with partially coupled a novel biodegradable carrier for nitrogen-rich water purification[J]. Bioresource Technology, 2017, 243: 800-809. doi: 10.1016/j.biortech.2017.06.127
|
[7] |
李兴, 勾芒芒, 刘学峰, 等. 高盐废水处理现状及研究进展[J]. 水处理技术, 2019, 45(5): 6-10. doi: 10.16796/j.cnki.1000-3770.2019.05.002
|
[8] |
HONG J, LI W, LIN B, et al. Deciphering the effect of salinity on the performance of submerged membrane bioreactor for aquaculture of bacterial community[J]. Desalination, 2013, 316: 23-30. doi: 10.1016/j.desal.2013.01.015
|
[9] |
SONG W, LI Z, DING Y, et al. Performance of a novel hybrid membrane bioreactor for treating saline wastewater from mariculture: Assessment of pollutants removal and membrane filtration performance[J]. Chemical Engineering Journal, 2018, 331: 695-703. doi: 10.1016/j.cej.2017.09.032
|
[10] |
BASSIN J P, KLEEREBEZEM R, MUYZER G, et al. Effect of different salt adaptation strategies on the microbial diversity, activity, and settling of nitrifying sludge in sequencing batch reactors[J]. Applied Microbiology and Biotechnology, 2012, 93(3): 1281-1294. doi: 10.1007/s00253-011-3428-7
|
[11] |
YU X, SHI J, KHAN A, et al. Immobilized-microbial bioaugmentation protects aerobic denitrification from heavy metal shock in an activated-sludge reactor[J]. Bioresource Technology, 2020, 307: 123185. doi: 10.1016/j.biortech.2020.123185
|
[12] |
谢林香. 生物强化技术在废水脱氮中的应用研究[D]. 福州: 福建农林大学, 2018.
|
[13] |
SHI K, ZHOU W, ZHAO H, et al. Performance of halophilic marine bacteria inocula on nutrient removal from hypersaline wastewater in an intermittently aerated biological filter[J]. Bioresource Technology, 2012, 113: 280-287. doi: 10.1016/j.biortech.2012.01.117
|
[14] |
唐婧, 屈姗姗, 傅金祥, 等. 复合菌剂强化处理高盐废水脱氮效果[J]. 环境工程学报, 2015, 9(6): 2699-2705. doi: 10.12030/j.cjee.20150626
|
[15] |
陈园. 悬浮载体移动床生物膜-活性污泥一体化SBR工艺深度脱氮研究[D]. 合肥: 安徽建筑大学, 2022.
|
[16] |
PAN Z, ZHOU J, LIN Z, et al. Effects of COD/TN ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process[J]. Bioresource Technology, 2020, 301: 122726. doi: 10.1016/j.biortech.2019.122726
|
[17] |
HUANG J L, CUI Y W, YAN J L, et al. Occurrence of heterotrophic nitrification-aerobic denitrification induced by decreasing salinity in a halophilic AGS SBR treating hypersaline wastewater[J]. Chemical Engineering Journal, 2022, 431: 134133. doi: 10.1016/j.cej.2021.134133
|
[18] |
SHE Z, ZHAO L, ZHANG X, et al. Partial nitrification and denitrification in a sequencing batch reactor treating high-salinity wastewater[J]. Chemical Engineering Journal, 2016, 288: 207-215. doi: 10.1016/j.cej.2015.11.102
|
[19] |
CUI Y, CUI Y W, HUANG J L. A novel halophilic Exiguobacterium mexicanum strain removes nitrogen from saline wastewater via heterotrophic nitrification and aerobic denitrification[J]. Bioresource Technology, 2021, 333: 125189. doi: 10.1016/j.biortech.2021.125189
|
[20] |
DUAN J, FANG H, SU B, et al. Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater[J]. Bioresource Technology, 2015, 179: 421-428. doi: 10.1016/j.biortech.2014.12.057
|
[21] |
WANG J, GONG B, WANG Y, et al. The potential multiple mechanisms and microbial communities in simultaneous nitrification and denitrification process treating high carbon and nitrogen concentration saline wastewater[J]. Bioresource Technology, 2017, 243: 708-715. doi: 10.1016/j.biortech.2017.06.131
|
[22] |
XU A, YU D, QIU Y, et al. A novel process of salt tolerance partial denitrification and anammox (ST-PDA) for treating saline wastewater[J]. Bioresource Technology, 2022, 345: 126472. doi: 10.1016/j.biortech.2021.126472
|
[23] |
DINH N T, NGUYEN T H, MUNGRAY A K, et al. Biological treatment of saline domestic wastewater by using a down-flow hanging sponge reactor[J]. Chemosphere, 2021, 283: 131101. doi: 10.1016/j.chemosphere.2021.131101
|
[24] |
HE Q, WANG H, CHEN L, et al. Elevated salinity deteriorated enhanced biological phosphorus removal in an aerobic granular sludge sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal[J]. Journal of Hazardous Materials, 2020, 390: 121782. doi: 10.1016/j.jhazmat.2019.121782
|
[25] |
SILVA L C F, LIMA H S, SARTORATTO A, et al. Effect of salinity in heterotrophic nitrification/aerobic denitrification performed by acclimated microbiota from oil-produced water biological treatment system[J]. International Biodeterioration & Biodegradation, 2018, 130: 1-7.
|
[26] |
CAMPOS J. Nitrification in saline wastewater with high ammonia concentration in an activated sludge unit[J]. Water Research, 2002, 36(10): 2555-2560. doi: 10.1016/S0043-1354(01)00467-5
|
[27] |
李佳萍, 楼菊青. 硫酸盐对Nitrate-DAMO反应过程影响及动力学特性[J]. 环境科学学报, 2020, 40(7): 2449-2457. doi: 10.13671/j.hjkxxb.2020.0081
|
[28] |
节梦瑞. UASB反应器处理硫酸盐废水的脱氮性能研究[D]. 邯郸: 河北工程大学, 2019.
|
[29] |
JI B, ZHANG H, ZHOU L, et al. Effect of the rapid increase of salinity on anoxic-oxic biofilm reactor for treatment of high-salt and high-ammonia-nitrogen wastewater[J]. Bioresource Technology, 2021, 337: 125363. doi: 10.1016/j.biortech.2021.125363
|
[30] |
JIANG Y, QIN Y, YU F, et al. Is COD/SO42- ratio responsible for metabolic phase-separation shift in anaerobic baffled reactor treating sulfate-laden wastewater?[J]. International Biodeterioration & Biodegradation, 2018, 126: 37-44.
|
[31] |
ZHANG X, ZHANG N, CHEN Z, et al. Long-term impact of sulfate on an autotrophic nitrogen removal system integrated partial nitrification, anammox and endogenous denitrification (PAED)[J]. Chemosphere, 2019, 235: 336-343. doi: 10.1016/j.chemosphere.2019.06.175
|
[32] |
张小里, 陈志昕, 刘海洪, 等. 环境因素对硫酸盐还原菌生长的影响[J]. 中国腐蚀与防护学报, 2000(4): 224-229. doi: 10.3969/j.issn.1005-4537.2000.04.006
|
[33] |
包宇飞. 硫酸盐对高氨氮有机废水处理的影响研究[D]. 武汉: 武汉理工大学, 2016.
|
[34] |
魏华, 韩芸, 张晓明, 等. 缺氧环境下硫酸盐还原对反硝化过程影响的特性试验研究[J]. 环境工程, 2005(5): 76-79. doi: 10.3969/j.issn.1000-8942.2005.05.026
|
[35] |
李蓉. 反硝化抑制SRB污泥颗粒化工艺特性及生物菌群特征研究[D]. 西安: 西安建筑科技大学, 2014.
|
[36] |
国家环境保护总局. 水和废水监测分析方法[J]. (第四版). 北京:中国环境科学出版社, 2002: 227-285.
|
[37] |
安鸿雪, 张婉玉, 薛飞, 等. 盐度对序批式生物膜反应器性能及微生物活性影响[J/OL]. 工业水处理.https://doi.org/10.19965/j.cnki.iwt. 2022-0770.
|
[38] |
曹新, 苏可欣, 宋新山, 等. 不同填料负载微生物去除地表水氨氮的研究[J]. 环境科学学报, 2022, 42(1): 213-221. doi: 10.13671/j.hjkxxb.2021.0468
|
[39] |
汤默然, 李茹莹. 异养硝化-好氧反硝化菌株的分离筛选及复配菌剂对河水的净化效果[J]. 环境科学学报, 2021, 41(7): 2657-2663. doi: 10.13671/j.hjkxxb.2020.0481
|
[40] |
KOSTRYTSIA A, PAPIRIO S, KHODZAEV M, et al. Biofilm carrier type affects biogenic sulfur-driven denitrification performance and microbial community dynamics in moving-bed biofilm reactors[J]. Chemosphere, 2022, 287: 131975. doi: 10.1016/j.chemosphere.2021.131975
|
[41] |
赵凯峰. 含盐污水生物脱氮除磷的性能研究[D]. 北京: 北京工业大学, 2010.
|
[42] |
LEE K C. Autohydrogenotrophic denitrification of drinking water using a hollow-fiber membrane biofilm reactor[D]. Northwestern University, 1999.
|
[43] |
李彭. 不同电子供体深度脱氮工艺及微生物群落特征研究[D]. 北京: 清华大学, 2014.
|
[44] |
赵中原. 不同外碳源反硝化脱氮性能及微生物种群结构变化研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
|
[45] |
艾海男, 马瑞祥, 何强, 等. 不同C/N条件下排水管道生物膜中氮分布特性[J]. 中国环境科学, 2017, 37(12): 4549-4555. doi: 10.3969/j.issn.1000-6923.2017.12.018
|
[46] |
吴淑妍, 潘云浩, 鲁帅领, 等. 碳氮比对移动床生物膜反应器处理海水养殖废水性能的影响[J]. 中国海洋大学学报(自然科学版), 2021(6): 99-108. doi: 10.16441/j.cnki.hdxb.20200212
|