[1] |
IPCC. Climate change 2021: the physical science basis[M]. UK: Cambridge University Press, 2021.
|
[2] |
TAO W K, CHEN J P, LI Z Q, et al. Impact of aerosols on convective clouds and precipitation [J]. Reviews of Geophysics, 2012, 50(2): RG2001.
|
[3] |
GARRETT T J, ZHAO C F. Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes [J]. Nature, 2006, 440(7085): 787-789. doi: 10.1038/nature04636
|
[4] |
XU B Q, CAO J J, HANSEN J, et al. Black soot and the survival of Tibetan glaciers [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(52): 22114-22118. doi: 10.1073/pnas.0910444106
|
[5] |
SHARMA A, BHATTACHARYA A, VENKATARAMAN C. Influence of aerosol radiative effects on surface temperature and snow melt in the Himalayan region [J]. The Science of the Total Environment, 2022, 810: 151299. doi: 10.1016/j.scitotenv.2021.151299
|
[6] |
ZHANG Y L, KANG S C, SPRENGER M, et al. Black carbon and mineral dust in snow cover on the Tibetan Plateau [J]. The Cryosphere, 2018, 12(2): 413-431. doi: 10.5194/tc-12-413-2018
|
[7] |
LI X F, KANG S C, ZHANG G S, et al. Light-absorbing impurities in a southern Tibetan Plateau glacier: Variations and potential impact on snow albedo and radiative forcing [J]. Atmospheric Research, 2018, 200: 77-87. doi: 10.1016/j.atmosres.2017.10.002
|
[8] |
ZHANG Y L, KANG S C, CONG Z Y, et al. Light-absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan Plateau [J]. Journal of Geophysical Research:Atmospheres, 2017, 122(13): 6915-6933. doi: 10.1002/2016JD026397
|
[9] |
LAU K M, KIM M K, KIM K M. Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau [J]. Climate Dynamics, 2006, 26(7/8): 855-864.
|
[10] |
CONG Z Y, KAWAMURA K, KANG S C, et al. Penetration of biomass-burning emissions from South Asia through the Himalayas: New insights from atmospheric organic acids [J]. Scientific Reports, 2015, 5: 9580. doi: 10.1038/srep09580
|
[11] |
KANG S C, CHEN P F, LI C L, et al. Atmospheric aerosol elements over the inland Tibetan Plateau: Concentration, seasonality, and transport [J]. Aerosol and Air Quality Research, 2016, 16(3): 789-800. doi: 10.4209/aaqr.2015.05.0307
|
[12] |
康世昌, 丛志远, 王小萍, 等. 大气污染物跨境传输及其对青藏高原环境影响 [J]. 科学通报, 2019, 64(27): 2876-2884. doi: 10.1360/TB-2019-0135
KANG S C, CONG Z Y, WANG X P, et al. The transboundary transport of air pollutants and their environmental impacts on Tibetan Plateau [J]. Chinese Science Bulletin, 2019, 64(27): 2876-2884(in Chinese). doi: 10.1360/TB-2019-0135
|
[13] |
RAMANATHAN V, RAMANA M V, ROBERTS G, et al. Warming trends in Asia amplified by brown cloud solar absorption [J]. Nature, 2007, 448(7153): 575-578. doi: 10.1038/nature06019
|
[14] |
ZHANG Y L, GAO T G, KANG S C, et al. Microplastics in glaciers of the Tibetan Plateau: Evidence for the long-range transport of microplastics [J]. Science of the Total Environment, 2021, 758: 143634. doi: 10.1016/j.scitotenv.2020.143634
|
[15] |
柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望 [J]. 地球科学进展, 2022, 37(2): 187-201. doi: 10.11867/j.issn.1001-8166.2021.123
CHAI L, WANG X P. Current knowledge and future prospects regarding persistent organic pollutants over the Tibetan Plateau [J]. Advances in Earth Science, 2022, 37(2): 187-201(in Chinese). doi: 10.11867/j.issn.1001-8166.2021.123
|
[16] |
WAKE C P, DIBB J E, MAYEWSKI P A, et al. The chemical composition of aerosols over the Eastern Himalayas and Tibetan Plateau during low dust periods [J]. Atmospheric Environment, 1994, 28(4): 695-704. doi: 10.1016/1352-2310(94)90046-9
|
[17] |
SHRESTHA A B, WAKE C P, DIBB J E. Chemical composition of aerosol and snow in the high Himalaya during the summer monsoon season [J]. Atmospheric Environment, 1997, 31(17): 2815-2826. doi: 10.1016/S1352-2310(97)00047-2
|
[18] |
WU G J, ZHANG X L, ZHANG C L, et al. Concentration and composition of dust particles in surface snow at Urumqi Glacier No. 1, Eastern Tien Shan [J]. Global and Planetary Change, 2010, 74(1): 34-42. doi: 10.1016/j.gloplacha.2010.07.008
|
[19] |
FENG X Y, MAO R, GONG D Y, et al. Increased dust aerosols in the high troposphere over the Tibetan Plateau from 1990s to 2000s [J]. Journal of Geophysical Research:Atmospheres, 2020, 125(13): e2020JD032807.
|
[20] |
吴浩, 许潇锋, 杨晓玥, 等. 青藏高原及周边区域沙尘气溶胶三维分布和传输特征 [J]. 环境科学学报, 2020, 40(11): 4081-4091. doi: 10.13671/j.hjkxxb.2020.0139
WU H, XU X F, YANG X Y, et al. Three-dimensional distribution and transport characteristics of dust over Tibetan Plateau and surrounding areas [J]. Acta Scientiae Circumstantiae, 2020, 40(11): 4081-4091(in Chinese). doi: 10.13671/j.hjkxxb.2020.0139
|
[21] |
MENG Y, LI R, ZHAO Y L, et al. Chemical characterization and sources of PM2.5 at a high-alpine ecosystem in the Southeast Tibetan Plateau, China [J]. Atmospheric Environment, 2020, 235: 117645. doi: 10.1016/j.atmosenv.2020.117645
|
[22] |
李汉林, 何清, 刘新春, 等. 帕米尔高原东部PM10输送路径及潜在源分析 [J]. 中国环境科学, 2020, 40(11): 4660-4668. doi: 10.3969/j.issn.1000-6923.2020.11.003
LI H L, HE Q, LIU X C, et al. Analysis of transport pathways and potential source regions of PM10 in the eastern Pamirs [J]. China Environmental Science, 2020, 40(11): 4660-4668(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.11.003
|
[23] |
CHEN B J, YOU S X, YE Y, et al. An interpretable self-adaptive deep neural network for estimating daily spatially-continuous PM2.5 concentrations across China [J]. Science of the Total Environment, 2021, 768: 144724. doi: 10.1016/j.scitotenv.2020.144724
|
[24] |
JI Z M, KANG S C, CONG Z Y, et al. Simulation of carbonaceous aerosols over the Third Pole and adjacent regions: Distribution, transportation, deposition, and climatic effects [J]. Climate Dynamics, 2015, 45(9): 2831-2846.
|
[25] |
ZHAO C F, YANG Y K, FAN H, et al. Aerosol characteristics and impacts on weather and climate over the Tibetan Plateau [J]. National Science Review, 2020, 7(3): 492-495. doi: 10.1093/nsr/nwz184
|
[26] |
YOU Y C, ZHAO T L, XIE Y, et al. Variation of the aerosol optical properties and validation of MODIS AOD products over the eastern edge of the Tibetan Plateau based on ground-based remote sensing in 2017 [J]. Atmospheric Environment, 2020, 223: 117257. doi: 10.1016/j.atmosenv.2019.117257
|
[27] |
陈涛, 罗布, 洛桑曲珍, 等. 拉萨市气溶胶光学厚度研究及MODIS产品检验 [J]. 高原山地气象研究, 2017, 37(4): 53-58. doi: 10.3969/j.issn.1674-2184.2017.04.009
CHEN T, LUOBU, LUOSANGQUZHEN, et al. Analysis of the aerosol optical depth in Lhasa and evaluation of MODIS aerosol product [J]. Plateau and Mountain Meteorology Research, 2017, 37(4): 53-58(in Chinese). doi: 10.3969/j.issn.1674-2184.2017.04.009
|
[28] |
XIN Y J, WANG G C, CHEN L. Identification of long-range transport pathways and potential sources of PM10 in Tibetan Plateau uplift area: Case study of Xining, China in 2014 [J]. Aerosol and Air Quality Research, 2016, 16(4): 1044-1054. doi: 10.4209/aaqr.2015.05.0296
|
[29] |
WANG Y Q, ZHANG X Y, SUN J Y, et al. Spatial and temporal variations of the concentrations of PM10, PM2.5 and PM1 in China [J]. Atmospheric Chemistry and Physics, 2015, 15(23): 13585-13598. doi: 10.5194/acp-15-13585-2015
|
[30] |
CHEN P F, YANG J H, PU T, et al. Spatial and temporal variations of gaseous and particulate pollutants in six sites in Tibet, China, during 2016-2017 [J]. Aerosol and Air Quality Research, 2019, 19(3): 516-527. doi: 10.4209/aaqr.2018.10.0360
|
[31] |
LI W J, SHAO L Y, WANG W H, et al. Air quality improvement in response to intensified control strategies in Beijing during 2013-2019 [J]. Science of the Total Environment, 2020, 744: 140776. doi: 10.1016/j.scitotenv.2020.140776
|
[32] |
MAENHAUT W, NAVA S, LUCARELLI F, et al. Chemical composition, impact from biomass burning, and mass closure for PM2.5 and PM10 aerosols at Hyytiälä, Finland, in summer 2007 [J]. X-Ray Spectrometry, 2011, 40(3): 168-171. doi: 10.1002/xrs.1302
|
[33] |
KAVAN J, DAGSSON-WALDHAUSEROVA P, RENARD J B, et al. Aerosol concentrations in relationship to local atmospheric conditions on James ross island, Antarctica [J]. Frontiers in Earth Science, 2018, 6: 207. doi: 10.3389/feart.2018.00207
|
[34] |
DUO B, ZHANG Y C, KONG L D, et al. Individual particle analysis of aerosols collected at Lhasa City in the Tibetan Plateau [J]. Journal of Environmental Sciences, 2015, 29: 165-177. doi: 10.1016/j.jes.2014.07.032
|
[35] |
石洪发. 青藏高原珠峰地区大气颗粒物浓度与粒径分布特征研究[D]. 北京: 中国科学院大学, 2021.
SHI H F. Study on the concentration and size distribution characteristics of atmospheric particulate matter in Everest region of Qinghai-Tibet Plateau[D]. Beijing: University of Chinese Academy of Sciences, 2021 (in Chinese).
|
[36] |
KESKINEN H M, YLIVINKKA I, HEIKKINEN L, et al. Long-term aerosol mass concentrations in southern Finland: Instrument validation, seasonal variation and trends [J]. Atmospheric Measurement Techniques Discussions, 2020: 1-27.
|
[37] |
陈思宇, 王晨, 谢亭亭, 等. 2014年中国大陆地区冷、暖季大气颗粒物的分布特征 [J]. 兰州大学学报(自然科学版), 2018, 54(2): 167-174,183. doi: 10.13885/j.issn.0455-2059.2018.02.005
CHEN S Y, WANG C, XIE T T, et al. Spatial distribution of particulate matter in China’s mainland during cold and warm seasons in 2014 [J]. Journal of Lanzhou University (Natural Sciences), 2018, 54(2): 167-174,183(in Chinese). doi: 10.13885/j.issn.0455-2059.2018.02.005
|
[38] |
李岩瑛, 张红丽, 张强, 等. 西北地区东部季风摆动区大气边界层高度对夏季风活动和季风降水的响应特征 [J]. 干旱区地理, 2020, 43(5): 1169-1178.
LI Y Y, ZHANG H L, ZHANG Q, et al. Response characteristics of atmospheric boundary layer height to summer monsoon activity and monsoon precipitation of monsoon swing region in the eastern part of northwest China [J]. Arid Land Geography, 2020, 43(5): 1169-1178(in Chinese).
|
[39] |
耿天召, 童欢欢, 赵旭辉, 等. 江淮地区湿沉降对颗粒物清除能力的影响 [J]. 环境科学研究, 2019, 32(2): 273-283. doi: 10.13198/j.issn.1001-6929.2018.11.04
GENG T Z, TONG H H, ZHAO X H, et al. Effect of wet deposition on the removal efficiency of particulate matter in the Yangtze-Huaihe region [J]. Research of Environmental Sciences, 2019, 32(2): 273-283(in Chinese). doi: 10.13198/j.issn.1001-6929.2018.11.04
|
[40] |
DUO B, CUI L L, WANG Z Z, et al. Observations of atmospheric pollutants at Lhasa during 2014-2015: Pollution status and the influence of meteorological factors [J]. Journal of Environmental Sciences, 2018, 63: 28-42. doi: 10.1016/j.jes.2017.03.010
|
[41] |
ASHBAUGH L L, MALM W C, SADEH W Z. A residence time probability analysis of sulfur concentrations at grand Canyon National Park [J]. Atmospheric Environment (1967), 1985, 19(8): 1263-1270. doi: 10.1016/0004-6981(85)90256-2
|
[42] |
HSU Y K, HOLSEN T M, HOPKE P K. Comparison of hybrid receptor models to locate PCB sources in Chicago [J]. Atmospheric Environment, 2003, 37(4): 545-562. doi: 10.1016/S1352-2310(02)00886-5
|
[43] |
彭艳, 王钊, 李星敏, 等. 近50a西安太阳辐射变化特征及相关影响因子分析 [J]. 干旱区地理, 2012, 35(5): 738-745.
PENG Y, WANG Z, LI X M, et al. Variation of surface solar radiation and its impact factors of Xi’an in recent 50 years [J]. Arid Land Geography, 2012, 35(5): 738-745(in Chinese).
|
[44] |
何秀, 邓兆泽, 李成才, 等. MODIS气溶胶光学厚度产品在地面PM10监测方面的应用研究 [J]. 北京大学学报(自然科学版)网络版(预印本), 2009(2): 26-32.
HE X, DENG Z Z, LI C C, et al. Application of MODIS AOD in surface PM10 evaluation [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009(2): 26-32(in Chinese).
|
[45] |
QIN W M, FANG H J, WANG L C, et al. MODIS high-resolution MAIAC aerosol product: Global validation and analysis [J]. Atmospheric Environment, 2021, 264: 118684. doi: 10.1016/j.atmosenv.2021.118684
|
[46] |
林海峰, 辛金元, 张文煜, 等. 北京市近地层颗粒物浓度与气溶胶光学厚度相关性分析研究 [J]. 环境科学, 2013, 34(3): 826-834. doi: 10.13227/j.hjkx.2013.03.025
LIN H F, XIN J Y, ZHANG W Y, et al. Comparison of atmospheric particulate matter and aerosol optical depth in Beijing city [J]. Environmental Science, 2013, 34(3): 826-834(in Chinese). doi: 10.13227/j.hjkx.2013.03.025
|