[1] |
ARDEN S, MA X. Constructed wetlands for greywater recycle and reuse: A review [J]. Science of the Total Environment, 2018, 630: 587-599. doi: 10.1016/j.scitotenv.2018.02.218
|
[2] |
PARDE D, PATWA A, SHUKLA A, et al. A review of constructed wetland on type, treatment and technology of wastewater [J]. Environmental Technology & Innovation, 2021, 21: 101261.
|
[3] |
VYMAZAL J, ZHAO Y Q, MANDER Ü. Recent research challenges in constructed wetlands for wastewater treatment: A review [J]. Ecological Engineering, 2021, 169: 106318. doi: 10.1016/j.ecoleng.2021.106318
|
[4] |
GARGALLO S, MARTÍN M, OLIVER N, et al. Sedimentation and resuspension modelling in free water surface constructed wetlands [J]. Ecological Engineering, 2017, 98: 318-329. doi: 10.1016/j.ecoleng.2016.09.014
|
[5] |
WANG H X, XU J L, SHENG L X, et al. A review of research on substrate materials for constructed wetlands [J]. Materials Science Forum, 2018, 913: 917-929. doi: 10.4028/www.scientific.net/MSF.913.917
|
[6] |
VYMAZAL J. Constructed wetlands for treatment of industrial wastewaters: A review [J]. Ecological Engineering, 2014, 73: 724-751. doi: 10.1016/j.ecoleng.2014.09.034
|
[7] |
蒋宗宏, 陈淼, 李心清, 等. 改性生物炭对水体中抗生素的去除研究进展 [J]. 环境化学, 2021, 40(12): 3846-3860. doi: 10.7524/j.issn.0254-6108.2020080202
JIANG Z H, CHEN M, LI X Q, et al. Research progress on the removal of antibiotics in water by modified biochar [J]. Environmental Chemistry, 2021, 40(12): 3846-3860(in Chinese). doi: 10.7524/j.issn.0254-6108.2020080202
|
[8] |
赵倩, 庄林岚, 盛芹, 等. 潜流人工湿地中基质在污水净化中的作用机制与选择原理 [J]. 环境工程, 2021, 39(9): 14-22. doi: 10.13205/j.hjgc.202109003
ZHAO Q, ZHUANG L L, SHENG Q, et al. Role and design principles of substrate for wastewater purification in subsurface flow constructed wetland [J]. Environmental Engineering, 2021, 39(9): 14-22(in Chinese). doi: 10.13205/j.hjgc.202109003
|
[9] |
CHEN L, QUAN X C, GAO Z Q, et al. A composite Fe-C/layered double oxides (Fe-C/LDO) carrier fabrication and application for enhanced removal of nitrate and phosphate from polluted water with a low carbon/nitrogen ratio [J]. Journal of Cleaner Production, 2022, 352: 131628. doi: 10.1016/j.jclepro.2022.131628
|
[10] |
JIA W, SUN X, GAO Y, et al. Fe-modified biochar enhances microbial nitrogen removal capability of constructed wetland [J]. Science of the Total Environment, 2020, 740: 139534. doi: 10.1016/j.scitotenv.2020.139534
|
[11] |
LUO J H, SONG G Y, LIU J Y, et al. Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface [J]. Journal of Colloid and Interface Science, 2014, 435: 21-25. doi: 10.1016/j.jcis.2014.08.043
|
[12] |
段浩楠, 吕宏虹, 王夫美, 等. 生物炭/铁复合材料的制备及其在环境修复中的应用研究进展 [J]. 环境化学, 2020, 39(3): 774-790. doi: 10.7524/j.issn.0254-6108.2019103109
DUAN H N, LYU H H, WANG F M, et al. Preparation of biochar/iron composite and its application in environmental remediation [J]. Environmental Chemistry, 2020, 39(3): 774-790(in Chinese). doi: 10.7524/j.issn.0254-6108.2019103109
|
[13] |
XIAO J N, GAO B Y, YUE Q Y, et al. Characterization of nanoscale zero-valent iron supported on granular activated carbon and its application in removal of acrylonitrile from aqueous solution [J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 55: 152-158. doi: 10.1016/j.jtice.2015.04.010
|
[14] |
WANG X Q, GONG X K, ZHANG Q X, et al. Degradation mechanism of Direct Pink 12B treated by iron-carbon micro-electrolysis and Fenton reaction [J]. Journal of Environmental Sciences, 2013, 25: S63-S68. doi: 10.1016/S1001-0742(14)60628-8
|
[15] |
MA Z F, YANG Y, JIANG Y H, et al. Enhanced degradation of 2, 4-dinitrotoluene in groundwater by persulfate activated using iron-carbon micro-electrolysis [J]. Chemical Engineering Journal, 2017, 311: 183-190. doi: 10.1016/j.cej.2016.11.083
|
[16] |
CHE J G, WAN J B, HUANG X P, et al. Pretreatment of piggery digestate wastewater by ferric-carbon micro-electrolysis under alkalescence condition [J]. Korean Journal of Chemical Engineering, 2017, 34(9): 2397-2405. doi: 10.1007/s11814-017-0144-8
|
[17] |
MA T, ZHANG L Y, XI B D, et al. Treatment of farmer household tourism wastewater using iron-carbon micro-electrolysis and horizontal subsurface flow constructed wetlands: A full-scale study [J]. Ecological Engineering, 2018, 110: 192-203. doi: 10.1016/j.ecoleng.2017.08.029
|
[18] |
LI X, JIA Y, QIN Y, et al. Iron-carbon microelectrolysis for wastewater remediation: Preparation, performance and interaction mechanisms [J]. Chemosphere, 2021, 278: 130483. doi: 10.1016/j.chemosphere.2021.130483
|
[19] |
苏志敏, 韩严和, 刘立娜. 铁碳微电解填料改性的研究进展 [J]. 现代化工, 2022, 42(5): 35-39.
SU Z M, HAN Y H, LIU L N. Advances on modification of iron-carbon micro-electrolytic fillers [J]. Modern Chemical Industry, 2022, 42(5): 35-39(in Chinese).
|
[20] |
WU Y W, YUE Q Y, REN Z F, et al. Immobilization of nanoscale zero-valent iron particles (nZVI) with synthesized activated carbon for the adsorption and degradation of Chloramphenicol (CAP) [J]. Journal of Molecular Liquids, 2018, 262: 19-28. doi: 10.1016/j.molliq.2018.04.032
|
[21] |
MORTAZAVIAN S, AN H, CHUN D, et al. Activated carbon impregnated by zero-valent iron nanoparticles (AC/nZVI) optimized for simultaneous adsorption and reduction of aqueous hexavalent chromium: Material characterizations and kinetic studies [J]. Chemical Engineering Journal, 2018, 353: 781-795. doi: 10.1016/j.cej.2018.07.170
|
[22] |
ABEDI T, MOJIRI A. Constructed wetland modified by biochar/zeolite addition for enhanced wastewater treatment [J]. Environmental Technology & Innovation, 2019, 16: 100472.
|
[23] |
VOHLA C, KÕIV M, BAVOR H J, et al. Filter materials for phosphorus removal from wastewater in treatment wetlands—a review [J]. Ecological Engineering, 2011, 37(1): 70-89. doi: 10.1016/j.ecoleng.2009.08.003
|
[24] |
ALLER M F. Biochar properties: Transport, fate, and impact [J]. Critical Reviews in Environmental Science and Technology, 2016, 46(14/15): 1183-1296.
|
[25] |
DONG H R, DENG J M, XIE Y K, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(Ⅵ) removal from aqueous solution [J]. Journal of Hazardous Materials, 2017, 332: 79-86. doi: 10.1016/j.jhazmat.2017.03.002
|
[26] |
di LUCA G A, MAINE M A, MUFARREGE M M, et al. Phosphorus distribution pattern in sediments of natural and constructed wetlands [J]. Ecological Engineering, 2017, 108: 227-233. doi: 10.1016/j.ecoleng.2017.08.038
|
[27] |
SONG N F, XU J, CAO Y P, et al. Chemical removal and selectivity reduction of nitrate from water by (nano) zero-valent iron/activated carbon micro-electrolysis [J]. Chemosphere, 2020, 248: 125986. doi: 10.1016/j.chemosphere.2020.125986
|
[28] |
GIKAS G D, VRYZAS Z, TSIHRINTZIS V A. S-metolachlor herbicide removal in pilot-scale horizontal subsurface flow constructed wetlands [J]. Chemical Engineering Journal, 2018, 339: 108-116. doi: 10.1016/j.cej.2018.01.056
|
[29] |
LATIF A, SHENG D, SUN K, et al. Remediation of heavy metals polluted environment using Fe-based nanoparticles: Mechanisms, influencing factors, and environmental implications [J]. Environmental Pollution, 2020, 264: 114728. doi: 10.1016/j.envpol.2020.114728
|
[30] |
AHMAD S, LIU X M, TANG J C, et al. Biochar-supported nanosized zero-valent iron (nZVI/BC) composites for removal of nitro and chlorinated contaminants [J]. Chemical Engineering Journal, 2022, 431: 133187. doi: 10.1016/j.cej.2021.133187
|
[31] |
ZHU S S, HUANG X C, WANG D W, et al. Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: Mechanisms and application potential [J]. Chemosphere, 2018, 207: 50-59. doi: 10.1016/j.chemosphere.2018.05.046
|
[32] |
LU J, ZHANG C, WU J. One-pot synthesis of magnetic algal carbon/sulfidated nanoscale zerovalent iron composites for removal of bromated disinfection by-product [J]. Chemosphere, 2020, 250: 126257. doi: 10.1016/j.chemosphere.2020.126257
|
[33] |
WANG R Z, HUANG D L, LIU Y G, et al. Recent advances in biochar-based catalysts: Properties, applications and mechanisms for pollution remediation [J]. Chemical Engineering Journal, 2019, 371: 380-403. doi: 10.1016/j.cej.2019.04.071
|
[34] |
LIU K Y, ZHENG F D, XIAO Y, et al. High Fe utilization efficiency and low toxicity of Fe3C@Fe0 loaded biochar for removing of tetracycline hydrochloride in wastewater [J]. Journal of Cleaner Production, 2022, 353(2): 131630.
|
[35] |
YANG S Z, SUN H N, SU S P, et al. Fabrication, characterizations and performance of a high-efficiency micro-electrolysis filler for isobutyl xanthate (IBX) degradation [J]. Journal of Hazardous Materials, 2021, 403: 123640. doi: 10.1016/j.jhazmat.2020.123640
|
[36] |
MAHDIZADEH H, MALAKOOTIAN M. Optimization of ciprofloxacin removal from aqueous solutions by a novel semi-fluid Fe/charcoal micro-electrolysis reactor using response surface methodology [J]. Process Safety and Environmental Protection, 2019, 123: 299-308. doi: 10.1016/j.psep.2019.01.024
|
[37] |
YI X Z, TRAN N H, YIN T R, et al. Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system [J]. Water Research, 2017, 121: 46-60. doi: 10.1016/j.watres.2017.05.008
|
[38] |
KANG Y, SUN H L, GAO B L, et al. Enhanced reduction of Cr(VI) in iron-carbon micro-electrolysis constructed wetlands: Mechanisms of iron cycle and microbial interactions [J]. Chemical Engineering Journal, 2022, 439: 135742. doi: 10.1016/j.cej.2022.135742
|
[39] |
JI Z H, TANG W Z, PEI Y S. Constructed wetland substrates: A review on development, function mechanisms, and application in contaminants removal [J]. Chemosphere, 2022, 286: 131564. doi: 10.1016/j.chemosphere.2021.131564
|
[40] |
WANG J, XIA L, CHEN J Y, et al. Synergistic simultaneous nitrification-endogenous denitrification and EBPR for advanced nitrogen and phosphorus removal in constructed wetlands [J]. Chemical Engineering Journal, 2021, 420: 127605. doi: 10.1016/j.cej.2020.127605
|
[41] |
CHEN H B, GAO Y R, LI J H, et al. Engineered biochar for environmental decontamination in aquatic and soil systems: A review [J]. Carbon Research, 2022, 1(1): 4. doi: 10.1007/s44246-022-00005-5
|
[42] |
HUANG X, YANG X M, ZHU J, et al. Microbial interspecific interaction and nitrogen metabolism pathway for the treatment of municipal wastewater by iron carbon based constructed wetland [J]. Bioresource Technology, 2020, 315: 123814. doi: 10.1016/j.biortech.2020.123814
|
[43] |
LI X Z, ZHOU L L, ZHUANG L L, et al. High-efficient nitrogen and phosphorus removal and its mechanism in a partially unsaturated constructed wetland with Fe-C micro-electrolysis substrate [J]. Chemical Engineering Journal, 2022, 431: 133252. doi: 10.1016/j.cej.2021.133252
|
[44] |
WANG X D, XU J, LIU J, et al. Mechanism of Cr(Ⅵ) removal by magnetic greigite/biochar composites [J]. Science of the Total Environment, 2020, 700: 134414. doi: 10.1016/j.scitotenv.2019.134414
|
[45] |
GAO J Q, ZHAO J, ZHANG J S, et al. Preparation of a new low-cost substrate prepared from drinking water treatment sludge (DWTS)/bentonite/zeolite/fly ash for rapid phosphorus removal in constructed wetlands [J]. Journal of Cleaner Production, 2020, 261: 121110. doi: 10.1016/j.jclepro.2020.121110
|
[46] |
JIA L X, LIU H, KONG Q, et al. Interactions of high-rate nitrate reduction and heavy metal mitigation in iron-carbon-based constructed wetlands for purifying contaminated groundwater [J]. Water Research, 2020, 169: 115285. doi: 10.1016/j.watres.2019.115285
|
[47] |
FENG Y, LIU P, WANG Y X, et al. Distribution and speciation of iron in Fe-modified biochars and its application in removal of As(V), As(III), Cr(VI), and Hg(II): An X-ray absorption study [J]. Journal of Hazardous Materials, 2020, 384: 121342. doi: 10.1016/j.jhazmat.2019.121342
|
[48] |
ZHU S S, HO S H, HUANG X C, et al. Magnetic nanoscale zerovalent iron assisted biochar: Interfacial chemical behaviors and heavy metals remediation performance [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 9673-9682.
|
[49] |
TSENG H H, SU J G, LIANG C J. Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene [J]. Journal of Hazardous Materials, 2011, 192(2): 500-506. doi: 10.1016/j.jhazmat.2011.05.047
|
[50] |
GAN L, WANG L J, XU L J, et al. Fe3C-porous carbon derived from Fe2O3 loaded MOF-74(Zn) for the removal of high concentration BPA: The integrations of adsorptive/catalytic synergies and radical/non-radical mechanisms [J]. Journal of Hazardous Materials, 2021, 413: 125305. doi: 10.1016/j.jhazmat.2021.125305
|
[51] |
ZHANG Y, LI Y, WANG J R, et al. Interactions of chlorpyrifos degradation and Cd removal in iron-carbon-based constructed wetlands for treating synthetic farmland wastewater [J]. Journal of Environmental Management, 2021, 299: 113559. doi: 10.1016/j.jenvman.2021.113559
|
[52] |
DENG S J, CHEN J Q, CHANG J J. Application of biochar as an innovative substrate in constructed wetlands/biofilters for wastewater treatment: Performance and ecological benefits [J]. Journal of Cleaner Production, 2021, 293: 126156. doi: 10.1016/j.jclepro.2021.126156
|
[53] |
YANG X Y, HE Q, LIU T, et al. Impact of microplastics on the treatment performance of constructed wetlands: Based on substrate characteristics and microbial activities [J]. Water Research, 2022, 217: 118430. doi: 10.1016/j.watres.2022.118430
|
[54] |
MA X N, LI X, LI J, et al. Iron-carbon could enhance nitrogen removal in Sesuvium portulacastrum constructed wetlands for treating mariculture effluents [J]. Bioresource Technology, 2021, 325: 124602. doi: 10.1016/j.biortech.2020.124602
|
[55] |
YIN X, QIAO S, ZHOU J T. Using electric field to enhance the activity of anammox bacteria [J]. Applied Microbiology and Biotechnology, 2015, 99(16): 6921-6930. doi: 10.1007/s00253-015-6631-0
|
[56] |
ZHANG J X, ZHANG Y B, LI Y, et al. Enhancement of nitrogen removal in a novel anammox reactor packed with Fe electrode [J]. Bioresource Technology, 2012, 114: 102-108. doi: 10.1016/j.biortech.2012.03.018
|
[57] |
陈欣, 祝惠, 阎百兴, 等. 铁碳微电解基质强化人工湿地污染物去除率的室内模拟实验 [J]. 湿地科学, 2018, 16(5): 684-689. doi: 10.13248/j.cnki.wetlandsci.2018.05.016
CHEN X, ZHU H, YAN B X, et al. Indoor simulation experiment on pollutant removal rates by micro-electrolysis material intensified constructed wetland [J]. Wetland Science, 2018, 16(5): 684-689(in Chinese). doi: 10.13248/j.cnki.wetlandsci.2018.05.016
|
[58] |
张博文. 铁改性花生壳生物炭吸附除磷性能及机理研究[D]. 北京: 中国地质大学(北京), 2018.
ZHANG B W. Performance and mechanism on the phosphorus adsorption by iron modified peanut shell biochar[D]. Beijing: China University of Geosciences(Beijing) , 2018 (in Chinese).
|
[59] |
BATOOL A, SALEH T A. Removal of toxic metals from wastewater in constructed wetlands as a green technology;catalyst role of substrates and chelators [J]. Ecotoxicology and Environmental Safety, 2020, 189: 109924. doi: 10.1016/j.ecoenv.2019.109924
|
[60] |
KUJAWSKA A, KIEŁKOWSKA U, ATISHA A, et al. Comparative analysis of separation methods used for the elimination of pharmaceuticals and personal care products (PPCPs) from water - A critical review [J]. Separation and Purification Technology, 2022, 290: 120797. doi: 10.1016/j.seppur.2022.120797
|
[61] |
BAYATI M, HO T L, VU D C, et al. Assessing the efficiency of constructed wetlands in removing PPCPs from treated wastewater and mitigating the ecotoxicological impacts [J]. International Journal of Hygiene and Environmental Health, 2021, 231: 113664. doi: 10.1016/j.ijheh.2020.113664
|
[62] |
AL-BALDAWI I A, MOHAMMED A A, MUTAR Z H, et al. Application of phytotechnology in alleviating pharmaceuticals and personal care products (PPCPs) in wastewater: Source, impacts, treatment, mechanisms, fate, and SWOT analysis [J]. Journal of Cleaner Production, 2021, 319: 128584. doi: 10.1016/j.jclepro.2021.128584
|
[63] |
EBELE A J, ABOU-ELWAFA ABDALLAH M, HARRAD S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment [J]. Emerging Contaminants, 2017, 3(1): 1-16. doi: 10.1016/j.emcon.2016.12.004
|
[64] |
LIN A Y C, LIN C A, TUNG H H, et al. Potential for biodegradation and sorption of acetaminophen, caffeine, propranolol and acebutolol in lab-scale aqueous environments [J]. Journal of Hazardous Materials, 2010, 183(1/2/3): 242-250.
|
[65] |
李莎, 王文奇, 范梦婕, 等. 环境持久性有机污染物治理技术进展 [J]. 现代化工, 2022, 42(6): 43-47. doi: 10.12361/2661-3689-04-06-93249
LI S, WANG W Q, FAN M J, et al. Progress in treatment technology for environmental persistent organic pollutants [J]. Modern Chemical Industry, 2022, 42(6): 43-47(in Chinese). doi: 10.12361/2661-3689-04-06-93249
|
[66] |
TAO Y, HU S B, HAN S Y, et al. Efficient removal of atrazine by iron-modified biochar loaded Acinetobacter lwoffii DNS32 [J]. Science of the Total Environment, 2019, 682: 59-69. doi: 10.1016/j.scitotenv.2019.05.134
|
[67] |
KUMAR M, YADAV A N, SAXENA R, et al. Biodiversity of pesticides degrading microbial communities and their environmental impact [J]. Biocatalysis and Agricultural Biotechnology, 2021, 31: 101883. doi: 10.1016/j.bcab.2020.101883
|
[68] |
ISMANTO A, HADIBARATA T, KRISTANTI R A, et al. Endocrine disrupting chemicals (EDCs) in environmental matrices: Occurrence, fate, health impact, physio-chemical and bioremediation technology [J]. Environmental Pollution, 2022, 302: 119061. doi: 10.1016/j.envpol.2022.119061
|
[69] |
ZHANG P, TAN X F, LIU S B, et al. Catalytic degradation of estrogen by persulfate activated with iron-doped graphitic biochar: Process variables effects and matrix effects [J]. Chemical Engineering Journal, 2019, 378: 122141. doi: 10.1016/j.cej.2019.122141
|
[70] |
田开放, 张漓杉, 张静, 等. 铁碳微电解耦合人工湿地系统处理硫丹废水研究 [J]. 工业水处理, 2020, 40(2): 28-31.
TIAN K F, ZHANG L S, ZHANG J, et al. Study on the treatment of endosulfan wastewater by iron-carbon micro-electrolysis coupled constructed wetland system [J]. Industrial Water Treatment, 2020, 40(2): 28-31(in Chinese).
|
[71] |
LI M Q, LUO R, WANG C H, et al. Iron-tannic modified cotton derived Fe0/graphitized carbon with enhanced catalytic activity for bisphenol A degradation [J]. Chemical Engineering Journal, 2019, 372: 774-784. doi: 10.1016/j.cej.2019.04.187
|
[72] |
WANG R G, ZHAO X, WANG T C, et al. Can we use mine waste as substrate in constructed wetlands to intensify nutrient removal?A critical assessment of key removal mechanisms and long-term environmental risks [J]. Water Research, 2022, 210: 118009. doi: 10.1016/j.watres.2021.118009
|
[73] |
SHAMEER S, PRASAD T N V K V. Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses [J]. Plant Growth Regulation, 2018, 84(3): 603-615. doi: 10.1007/s10725-017-0365-1
|
[74] |
ALI M, ROUSSEAU D P L, AHMED S. A full-scale comparison of two hybrid constructed wetlands treating domestic wastewater in Pakistan [J]. Journal of Environmental Management, 2018, 210: 349-358.
|
[75] |
TANG X Y, YANG Y, TAO R, et al. Fate of mixed pesticides in an integrated recirculating constructed wetland (IRCW) [J]. Science of the Total Environment, 2016, 571: 935-942. doi: 10.1016/j.scitotenv.2016.07.079
|
[76] |
张骁栋, 朱建华, 康晓明, 等. 中国湿地温室气体清单编制研究进展 [J]. 生态学报, 2022, 42(23): 1-14.
ZHANG X D, ZHU J H, KANG X M, et al. An overview of greenhouse gas inventory in the Chinese wetlands [J]. Acta Ecologica Sinica, 2022, 42(23): 1-14(in Chinese).
|
[77] |
MALTAIS-LANDRY G, MARANGER R, BRISSON J, et al. Greenhouse gas production and efficiency of planted and artificially aerated constructed wetlands [J]. Environmental Pollution, 2009, 157(3): 748-754. doi: 10.1016/j.envpol.2008.11.019
|
[78] |
KONG F L, WANG J R, HOU W H, et al. Influence of modified biochar supported sulfidation of nano-zero-valent-iron (S-nZVI/BC) on nitrate removal and greenhouse gas emission in constructed wetland [J]. Journal of Environmental Sciences, 2023, 125: 568-581. doi: 10.1016/j.jes.2022.02.040
|
[79] |
SØVIK A K, KLØVE B. Emission of N2O and CH4 from a constructed wetland in southeastern Norway [J]. The Science of the Total Environment, 2007, 380(1/2/3): 28-37.
|
[80] |
ZHOU T T, LIU J G, LIE Z Y, et al. Effects of applying different carbon substrates on nutrient removal and greenhouse gas emissions by constructed wetlands treating carbon-depleted hydroponic wastewater [J]. Bioresource Technology, 2022, 357: 127312. doi: 10.1016/j.biortech.2022.127312
|
[81] |
QIN C Y, XU X Y, PECK E. Sink or source?Insights into the behavior of copper and zinc in the sediment porewater of a constructed wetland by peepers [J]. The Science of the Total Environment, 2022, 821: 153127. doi: 10.1016/j.scitotenv.2022.153127
|
[82] |
ZHAO Z J, HAO Q J, MA R Z, et al. Ferric-carbon micro-electrolysis and zeolite reduce CH4 and N2O emissions from the aerated constructed wetland [J]. Journal of Cleaner Production, 2022, 342: 130946. doi: 10.1016/j.jclepro.2022.130946
|
[83] |
JI B H, JIANG M, YANG Y, et al. High treatment effectiveness for secondary effluent in Fe-C microelectrolysis constructed wetlands with electron donor supplementation [J]. Journal of Cleaner Production, 2022, 342: 130934. doi: 10.1016/j.jclepro.2022.130934
|