[1] YANG Z H, ZHANG X M, JIANG Z, et al. Reductive materials for remediation of hexavalent chromium contaminated soil - A review [J]. Science of the Total Environment, 2021, 773: 145654. doi: 10.1016/j.scitotenv.2021.145654
[2] 骆和东, 吴雨然, 姜艳芳. 我国食品中铬污染现状及健康风险 [J]. 中国食品卫生杂志, 2015, 27(6): 717-721. LUO H D, WU Y R, JIANG Y F. The contamination situation of chromium in food and risk assessment in China [J]. Chinese Journal of Food Hygiene, 2015, 27(6): 717-721(in Chinese).
[3] COETZEE J J, BANSAL N, CHIRWA E M N. Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation [J]. Exposure and Health, 2020, 12(1): 51-62. doi: 10.1007/s12403-018-0284-z
[4] CHEN H L, AROCENA J M, LI J B, et al. Assessments of chromium (and other metals) in vegetables and potential bio-accumulations in humans living in areas affected by tannery wastes [J]. Chemosphere, 2014, 112: 412-419. doi: 10.1016/j.chemosphere.2014.04.091
[5] WANG P F, YIN N Y, CAI X L, et al. Variability of chromium bioaccessibility and speciation in vegetables: The influence of in vitro methods, gut microbiota and vegetable species [J]. Food Chemistry, 2019, 277: 347-352. doi: 10.1016/j.foodchem.2018.10.120
[6] 李君, 柳晓琳, 吴鹏. 铬污染地区蔬菜铬含量状况分析 [J]. 现代预防医学, 2014, 41(21): 3876-3878. LI J, LIU X L, WU P. Assessment of content of Cr on vegetables from polluted area [J]. Modern Preventive Medicine, 2014, 41(21): 3876-3878(in Chinese).
[7] 徐笠, 陆安祥, 王纪华, 等. 食物中重金属的生物可给性和生物有效性的研究方法和应用进展 [J]. 生态毒理学报, 2017, 12(1): 89-97. XU L, LU A X, WANG J H, et al. Research methods and applications of bioaccessibility and bioavailability of heavy metals in food [J]. Asian Journal of Ecotoxicology, 2017, 12(1): 89-97(in Chinese).
[8] 郑顺安, 韩允垒, 刘代丽, 等. 土壤汞生物可给性的影响因素研究: 基于体外模拟(in vitro)法 [J]. 环境化学, 2019, 38(12): 2665-2671. ZHENG S A, HAN Y L, LIU D L, et al. Influence of soil properties on the Hg bioaccessibility in polluted soils investigated by in vitro digestion approachaes [J]. Environmental Chemistry, 2019, 38(12): 2665-2671(in Chinese).
[9] IN J G, FOULKE-ABEL J, ESTES M K, et al. Human mini-guts: New insights into intestinal physiology and host–pathogen interactions [J]. Nature Reviews Gastroenterology & Hepatology, 2016, 13(11): 633-642.
[10] 高渊, 陆晨希, 袁鹏, 等. 肠道微生物与环境健康关系的研究进展与展望 [J]. 环境化学, 2021, 40(1): 1-10. doi: 10.1002/etc.4760 GAO Y, LU C X, YUAN P, et al. Research progress and prospect of relationship between gut microbiota and environmental health [J]. Environmental Chemistry, 2021, 40(1): 1-10(in Chinese). doi: 10.1002/etc.4760
[11] van de WIELE T, BOON N, POSSEMIERS S, et al. Prebiotic effects of chicory inulin in the simulator of the human intestinal microbial ecosystem [J]. FEMS Microbiology Ecology, 2004, 51(1): 143-153. doi: 10.1016/j.femsec.2004.07.014
[12] YIN N Y, ZHAO Y L, WANG P F, et al. Effect of gut microbiota on in vitro bioaccessibility of heavy metals and human health risk assessment from ingestion of contaminated soils [J]. Environmental Pollution, 2021, 279: 116943. doi: 10.1016/j.envpol.2021.116943
[13] 耿紫琪, 王鹏飞, 付雅祺, 等. 稻米中铬的生物可给性及其对人体的健康风险评价 [J]. 生态毒理学报, 2020, 15(6): 205-211. GENG Z Q, WANG P F, FU Y Q, et al. Bioaccessibility of chromium in rice and its human health risk assessment [J]. Asian Journal of Ecotoxicology, 2020, 15(6): 205-211(in Chinese).
[14] INTAWONGSE M, DEAN J R. Use of the physiologically-based extraction test to assess the oral bioaccessibility of metals in vegetable plants grown in contaminated soil [J]. Environmental Pollution, 2008, 152(1): 60-72. doi: 10.1016/j.envpol.2007.05.022
[15] XU F F, SONG J, LI Y Q, et al. Bioaccessibility and bioavailability adjusted dietary exposure of cadmium for local residents from a high-level environmental cadmium region [J]. Journal of Hazardous Materials, 2021, 420: 126550. doi: 10.1016/j.jhazmat.2021.126550
[16] 侯胜男, 汤琳, 郑娜, 等. 典型锌冶金区蔬菜重金属的生物可给性及健康风险评价 [J]. 环境科学学报, 2018, 38(1): 343-349. HOU S N, TANG L, ZHENG N, et al. Bioaccessibility and health risk assessment of heavy metals in vegetables of typical mining area [J]. Acta Scientiae Circumstantiae, 2018, 38(1): 343-349(in Chinese).
[17] CHI H F, ZHANG Y C, WILLIAMS P N, et al. In vitro model to assess arsenic bioaccessibility and speciation in cooked shrimp [J]. Journal of Agricultural and Food Chemistry, 2018, 66(18): 4710-4715. doi: 10.1021/acs.jafc.7b06149
[18] YIN N Y, ZHANG Z N, CAI X L, et al. In vitro method to assess soil arsenic metabolism by human gut microbiota: Arsenic speciation and distribution [J]. Environmental Science & Technology, 2015, 49(17): 10675-10681.
[19] 崔岩山, 陈晓晨. 土壤中镉的生物可给性及其对人体的健康风险评估 [J]. 环境科学, 2010, 31(2): 403-408. CUI Y S, CHEN X C. Bioaccessibility of soil cadmium and its health risk assessment [J]. Environmental Science, 2010, 31(2): 403-408(in Chinese).
[20] 方晴, 冼萍, 蒙政成. 基于蒙特卡罗模拟的农用地土壤健康风险评价 [J]. 环境工程, 2021, 39(2): 147-152. FANG Q, XIAN P, MENG Z C. Environmental health risk assessment model of agricultural land based on Monte Carlo simulation and its application [J]. Environmental Engineering, 2021, 39(2): 147-152(in Chinese).
[21] 徐笠, 刘洋, 杨婧婧, 等. 利用体外实验方法评估稻米中镉的生物可给性和健康风险 [J]. 生态毒理学报, 2017, 12(5): 219-226. XU L, LIU Y, YANG J J, et al. Bioaccessiblity of cadmium in rice and its health risk assessment by in vitro method [J]. Asian Journal of Ecotoxicology, 2017, 12(5): 219-226(in Chinese).
[22] 林承奇, 蔡宇豪, 胡恭任, 等. 闽西南土壤-水稻系统重金属生物可给性及健康风险 [J]. 环境科学, 2021, 42(1): 359-367. LIN C Q, CAI Y H, HU G R, et al. Bioaccessibility and health risks of the heavy metals in soil-rice system of southwest Fujian Province [J]. Environmental Science, 2021, 42(1): 359-367(in Chinese).
[23] LUO Y, DUAN Z B, WU Y G. Risk assessment for oral bioaccessibility of lead and cadmium in the potato growing in smelter-impacted soil [J]. Bulletin of Environmental Contamination and Toxicology, 2021, 106(2): 363-369. doi: 10.1007/s00128-020-03099-y
[24] MNISI R L, NDIBEWU P P, MAFU L D, et al. Bioaccessibility and risk assessment of essential and non-essential elements in vegetables commonly consumed in Swaziland [J]. Ecotoxicology and Environmental Safety, 2017, 144: 396-401. doi: 10.1016/j.ecoenv.2017.06.033
[25] YANG Y G, LI F L, BI X Y, et al. Lead, zinc, and cadmium in vegetable/crops in a zinc smelting region and its potential human toxicity [J]. Bulletin of Environmental Contamination and Toxicology, 2011, 87(5): 586. doi: 10.1007/s00128-011-0388-7
[26] 吴永宁, 赵云峰, 李敬光. 第五次中国总膳食研究[M]. 北京: 科学出版社, 2018: 64-112. WU Y N, ZHAO Y F, LI J G. The fifth China total diet study[M]. Beijing: Science Press, 2018: 64-112(in Chinese).
[27] 环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京: 中国环境出版社, 2013: 219-258. Ministry of Environmental Protection of the People's Republic of China. Exposure factors handbook of Chinese population (Adult Volume)[M]. Beijing: China Environmental Science Press, 2013: 219-258(in Chinese).
[28] 环境保护部. 中国人群暴露参数手册(儿童卷)[M]. 北京: 中国环境出版社, 2013: 55-81. Ministry of Environmental Protection of the People's Republic of China. Exposure factors handbook of Chinese population (Child Volume)[M]. Beijing: China Environmental Science Press, 2013: 55-81(in Chinese).
[29] HUANG J L, WU Y Y, SUN J X, et al. Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with Positive matrix factorization model [J]. Journal of Hazardous Materials, 2021, 415: 125629. doi: 10.1016/j.jhazmat.2021.125629
[30] 陈志良, 黄玲, 周存宇, 等. 广州市蔬菜中重金属污染特征研究与评价 [J]. 环境科学, 2017, 38(1): 389-398. doi: 10.21608/jes.2017.19594 CHEN Z L, HUANG L, ZHOU C Y, et al. Characteristics and evaluation of heavy metal pollution in vegetables in Guangzhou [J]. Environmental Science, 2017, 38(1): 389-398(in Chinese). doi: 10.21608/jes.2017.19594
[31] 查燕, 汤婕, 牛天新. 叶菜类蔬菜对重金属富集特征研究 [J]. 江西农业大学学报, 2022, 44(3): 773-782. ZHA Y, TANG J, NIU T X. Study on enrichment characteristics of heavy metals in leafy vegetables [J]. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44(3): 773-782(in Chinese).
[32] ZHUANG P, ZHANG C S, LI Y W, et al. Assessment of influences of cooking on cadmium and arsenic bioaccessibility in rice, using an in vitro physiologically-based extraction test [J]. Food Chemistry, 2016, 213: 206-214. doi: 10.1016/j.foodchem.2016.06.066
[33] HU J L, WU F Y, WU S C, et al. Bioaccessibility, dietary exposure and human risk assessment of heavy metals from market vegetables in Hong Kong revealed with an in vitro gastrointestinal model [J]. Chemosphere, 2013, 91(4): 455-461. doi: 10.1016/j.chemosphere.2012.11.066
[34] OOMEN A G, HACK A, MINEKUS M, et al. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants [J]. Environmental Science & Technology, 2002, 36(15): 3326-3334.
[35] JOBBÁGY M, BLESA M A, REGAZZONI A E. Homogeneous precipitation of layered Ni(II)-Cr(III) double hydroxides [J]. Journal of Colloid and Interface Science, 2007, 309(1): 72-77. doi: 10.1016/j.jcis.2007.01.010
[36] LI Y, ZHANG M K. A comparison of physiologically based extraction test (PBET) and single-extraction methods for release of Cu, Zn, and Pb from mildly acidic and alkali soils [J]. Environmental Science and Pollution Research, 2013, 20(5): 3140-3148. doi: 10.1007/s11356-012-1234-0
[37] FRAGA C G. Relevance, essentiality and toxicity of trace elements in human health [J]. Molecular Aspects of Medicine, 2005, 26(4/5): 235-244.
[38] 郭莹莹, 张弛, 段志鹏, 等. 基于形态与in vitro方法的铬污染土壤生物可给性研究 [J]. 环境科学学报, 2022, 42(10): 430-440. GUO Y Y, ZHANG C, DUAN Z P, et al. Bioaccessibility of chromium contaminated soil based on speciation and in vitro methods [J]. Acta Scientiae Circumstantiae, 2022, 42(10): 430-440(in Chinese).
[39] PELFRÊNE A, WATERLOT C, GUERIN A, et al. Use of an in vitro digestion method to estimate human bioaccessibility of Cd in vegetables grown in smelter-impacted soils: The influence of cooking [J]. Environmental Geochemistry and Health, 2015, 37(4): 767-778. doi: 10.1007/s10653-015-9684-1
[40] 徐飞飞, 李跃麒, 林珺, 等. 典型环境高镉地区常见蔬菜中镉的生物可及性及健康风险评估 [J]. 食品工业科技, 2022, 43(14): 293-300. XU F F, LI Y Q, LIN J, et al. Bioaccessibility of cadmium in common vegetables in typical environmental high cadmium region and the health risk assessment [J]. Science and Technology of Food Industry, 2022, 43(14): 293-300(in Chinese).
[41] 孙长豹, 刘志静, 刘飞, 等. 食物成分对肠道菌群结构的影响 [J]. 食品研究与开发, 2018, 39(9): 178-182. SUN C B, LIU Z J, LIU F, et al. Impact of dietary components on gut microbiota structure [J]. Food Research and Development, 2018, 39(9): 178-182(in Chinese).
[42] KAZI T G, MEMON N S, SHAIKH S A, et al. Speciation and separation of trace quantities of hexavalent and trivalent chromium species in aqueous extract of wild leafy vegetables using multistep pre-concentration method [J]. Food Analytical Methods, 2019, 12(9): 1964-1972. doi: 10.1007/s12161-019-01544-1
[43] YOUNAN S, SAKITA G Z, ALBUQUERQUE T R, et al. Chromium(Ⅵ) bioremediation by probiotics [J]. Journal of the Science of Food and Agriculture, 2016, 96(12): 3977-3982. doi: 10.1002/jsfa.7725
[44] DUAN H, YU L L, TIAN F W, et al. Gut microbiota: A target for heavy metal toxicity and a probiotic protective strategy [J]. Science of the Total Environment, 2020, 742: 140429. doi: 10.1016/j.scitotenv.2020.140429
[45] PENG L, LIU Y W, GAO S H, et al. Assessing chromate reduction by dissimilatory iron reducing bacteria using mathematical modeling [J]. Chemosphere, 2015, 139: 334-339. doi: 10.1016/j.chemosphere.2015.06.090
[46] ERTANI A, MIETTO A, BORIN M, et al. Chromium in agricultural soils and crops: A review [J]. Water, Air, & Soil Pollution, 2017, 228(5): 190.
[47] SALONEN A, de VOS W M. Impact of diet on human intestinal microbiota and health [J]. Annual Review of Food Science and Technology, 2014, 5: 239-262. doi: 10.1146/annurev-food-030212-182554
[48] YIN N Y, DU H L, WANG P F, et al. Interindividual variability of soil arsenic metabolism by human gut microbiota using SHIME model [J]. Chemosphere, 2017, 184: 460-466. doi: 10.1016/j.chemosphere.2017.06.018
[49] DUAN Z B, ZHENG Y, LUO Y, et al. Evaluation of cadmium transfer from soil to the human body through maize consumption in a cadmium anomaly area of southwestern China [J]. Environmental Toxicology and Chemistry, 2021, 40(10): 2923-2934. doi: 10.1002/etc.5171
[50] WANG M Y, LI M Y, NING H, et al. Cadmium oral bioavailability is affected by calcium and phytate contents in food: Evidence from leafy vegetables in mice [J]. Journal of Hazardous Materials, 2022, 424: 127373. doi: 10.1016/j.jhazmat.2021.127373
[51] 尹乃毅, 都慧丽, 张震南, 等. 应用SHIME模型研究肠道微生物对土壤中镉、铬、镍生物可给性的影响 [J]. 环境科学, 2016, 37(6): 2353-2358. YIN N Y, DU H L, ZHANG Z N, et al. Effects of human gut microbiota on bioaccessibility of soil Cd, Cr and Ni using SHIME model [J]. Environmental Science, 2016, 37(6): 2353-2358(in Chinese).