[1] |
YANG Q Q, LI Z Y, LU X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment[J]. Science of the Total Environment, 2018, 642: 690-700. doi: 10.1016/j.scitotenv.2018.06.068
|
[2] |
HU B F, ZHAO R Y, CHEN S C, et al. Heavy metal pollution delineation based on uncertainty in a coastal industrial city in the yangtze river delta, China[J]. International Journal of Environmental Research and Public Health, 2018, 15(4): 710. doi: 10.3390/ijerph15040710
|
[3] |
环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 国土资源通讯, 2014(8): 26-29.
|
[4] |
陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9): 1689-1692. doi: 10.11654/jaes.2017-1220
|
[5] |
JIA X L, FU T T, HU B F, et al. Identification of the potential risk areas for soil heavy metal pollution based on the source-sink theory[J]. Journal of Hazardous Materials, 2020, 393: 122424. doi: 10.1016/j.jhazmat.2020.122424
|
[6] |
QIN G W, NIU Z D, YU J D, et al. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology[J]. Chemosphere, 2021, 267: 129205. doi: 10.1016/j.chemosphere.2020.129205
|
[7] |
HAMID Y, TANG L, SOHAIL M I, et al. An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain[J]. Science of the Total Environment, 2019, 660: 80-96. doi: 10.1016/j.scitotenv.2018.12.419
|
[8] |
YAASHIKAA P R, KUMAR P S, VARJANI S, et al. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy[J]. Biotechnology Reports, 2020, 28: e00570. doi: 10.1016/j.btre.2020.e00570
|
[9] |
LIU Z G, ZHANG F S. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass[J]. Journal of Hazardous Materials, 2009, 167(1): 933-939.
|
[10] |
SAIFULLAH, DAHLAWI S, NAEEM A, et al. Biochar application for the remediation of salt-affected soils: Challenges and opportunities[J]. Science of the Total Environment, 2018, 625: 320-335. doi: 10.1016/j.scitotenv.2017.12.257
|
[11] |
ZHENG H, WANG X, CHEN L, et al. Enhanced growth of halophyte plants in biochar-amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation[J]. Plant Cell and Environment, 2018, 41(3): 517-532. doi: 10.1111/pce.12944
|
[12] |
WU S W, ZHANG Y, TAN Q L, et al. Biochar is superior to lime in improving acidic soil properties and fruit quality of Satsuma mandarin[J]. Science of the Total Environment, 2020, 714: 136722. doi: 10.1016/j.scitotenv.2020.136722
|
[13] |
NIE C R, YANG X, NIAZI N K, et al. Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: A field study[J]. Chemosphere, 2018, 200: 274-282. doi: 10.1016/j.chemosphere.2018.02.134
|
[14] |
ZHAN F D, ZENG W Z, YUAN X C, et al. Field experiment on the effects of sepiolite and biochar on the remediation of Cd- and Pb-polluted farmlands around a Pb-Zn mine in Yunnan Province, China[J]. Environmental Science and Pollution Research, 2019, 26(8): 7743-7751. doi: 10.1007/s11356-018-04079-w
|
[15] |
RAJAPAKSHA A U, CHEN S S, TSANG D C W, et al. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification[J]. Chemosphere, 2016, 148: 276-291. doi: 10.1016/j.chemosphere.2016.01.043
|
[16] |
李伟亚, 刘希灵, 李志贤, 等. 生物炭对湘潭锰矿区土壤重金属的固化效应[J]. 生态环境学报, 2018, 27(7): 1306-1312. doi: 10.16258/j.cnki.1674-5906.2018.07.015
|
[17] |
WANG L, WANG Y J, MA F, et al. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: A review[J]. Science of the Total Environment, 2019, 668: 1298-1309. doi: 10.1016/j.scitotenv.2019.03.011
|
[18] |
VITHANAGE M, HERATH I, JOSEPH S, et al. Interaction of arsenic with biochar in soil and water: A critical review[J]. Carbon, 2017, 113: 219-230. doi: 10.1016/j.carbon.2016.11.032
|
[19] |
LIU W J, ZENG F X, JIANG H, et al. Preparation of high adsorption capacity bio-chars from waste biomass[J]. Bioresource Technology, 2011, 102(17): 8247-8252. doi: 10.1016/j.biortech.2011.06.014
|
[20] |
王重庆, 王晖, 江小燕, 等. 生物炭吸附重金属离子的研究进展[J]. 化工进展, 2019, 38(1): 692-706. doi: 10.16085/j.issn.1000-6613.2018-0993
|
[21] |
BEESLEY L, INNEH O S, NORTON G J, et al. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil[J]. Environmental Pollution, 2014, 186: 195-202. doi: 10.1016/j.envpol.2013.11.026
|
[22] |
YIN D X, WANG X, PENG B, et al. Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system[J]. Chemosphere, 2017, 186: 928-937. doi: 10.1016/j.chemosphere.2017.07.126
|
[23] |
黄开友, 申英杰, 王晓岩, 等. 生物炭负载纳米零价铁制备及修复六价铬污染土壤技术研究进展[J]. 环境工程, 2020, 38(11): 9. doi: 10.13205/j.hjgc.202011033
|
[24] |
周嗣江, 刘针延, 熊双莲, 等. 同步钝化土壤Cd和As材料的筛选[J]. 环境科学, 2021, 42(7): 3527-3534. doi: 10.13227/j.hjkx.202010022
|
[25] |
ZHANG J Y, ZHOU H, GU J F, et al. Effects of nano-Fe3O4-modified biochar on iron plaque formation and Cd accumulation in rice (Oryza sativa L. )[J]. Environmental Pollution, 2020, 260: 113970. doi: 10.1016/j.envpol.2020.113970
|
[26] |
ISLAM M S, CHEN Y L, WENG L P, et al. Watering techniques and zero-valent iron biochar pH effects on As and Cd concentrations in rice rhizosphere soils, tissues and yield[J]. Journal of Environmental Sciences, 2021, 100: 144-157. doi: 10.1016/j.jes.2020.07.002
|
[27] |
LYU H H, ZHAO H, TANG J C, et al. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite[J]. Chemosphere, 2018, 194: 360-369. doi: 10.1016/j.chemosphere.2017.11.182
|
[28] |
WAN X M, LI C Y, PARIKH S J. Simultaneous removal of arsenic, cadmium, and lead from soil by iron-modified magnetic biochar[J]. Environmental Pollution, 2020, 261: 114157. doi: 10.1016/j.envpol.2020.114157
|
[29] |
LIU X Y, YANG L, ZHAO H T, et al. Pyrolytic production of zerovalent iron nanoparticles supported on rice husk-derived biochar: simple, in situ synthesis and use for remediation of Cr(VI)-polluted soils[J]. Science of the Total Environment, 2020, 708: 134479. doi: 10.1016/j.scitotenv.2019.134479
|
[30] |
WANG S S, ZHAO M Y, ZHOU M, et al. Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: A critical review[J]. Journal of Hazardous Materials, 2019, 373: 820-834. doi: 10.1016/j.jhazmat.2019.03.080
|
[31] |
LOPES R P, ASTRUC D. Biochar as a support for nanocatalysts and other reagents: Recent advances and applications[J]. Coordination Chemistry Reviews, 2021, 426: 213585. doi: 10.1016/j.ccr.2020.213585
|
[32] |
GUAN X H, SUN Y K, QIN H J, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994-2014)[J]. Water Research, 2015, 75: 224-248. doi: 10.1016/j.watres.2015.02.034
|
[33] |
XIE Y K, DONG H R, ZENG G M, et al. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review[J]. Journal of Hazardous Materials, 2017, 321: 390-407. doi: 10.1016/j.jhazmat.2016.09.028
|
[34] |
ZAND A D, TABRIZI A M, HEIR A V. Incorporation of biochar and nanomaterials to assist remediation of heavy metals in soil using plant species[J]. Environmental Technology & Innovation, 2020, 20: 101134.
|
[35] |
YAN J C, HAN L, GAO W G, et al. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene[J]. Bioresource Technology, 2015, 175: 269-274. doi: 10.1016/j.biortech.2014.10.103
|
[36] |
QIAN L B, ZHANG W Y, YAN J C, et al. Nanoscale zero-valent iron supported by biochars produced at different temperatures: Synthesis mechanism and effect on Cr(VI) removal[J]. Environmental Pollution, 2017, 223: 153-160. doi: 10.1016/j.envpol.2016.12.077
|
[37] |
SU H J, FANG Z Q, TSANG P E, et al. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles[J]. Journal of Hazardous Materials, 2016, 318: 533-540. doi: 10.1016/j.jhazmat.2016.07.039
|
[38] |
邓俊敏. 生物炭负载纳米零价铁在还原及氧化体系下对污染物的去除研究[D]. 长沙: 湖南大学, 2018.
|
[39] |
朱庆涛, 吴晓毅, 郭启慧, 等. 生物炭负载纳米零价铁的制备及其去除水中污染物的研究进展[J]. 能源化工, 2018, 39(4): 73-77. doi: 10.3969/j.issn.1006-7906.2018.04.015
|
[40] |
SHIN J, LEE Y G, KWAK J, et al. Adsorption of radioactive strontium by pristine and magnetic biochars derived from spent coffee grounds[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 105119.
|
[41] |
WU J T, HUANG R, ZHOU Q Q, et al. Magnetic biochar reduces phosphorus uptake by Phragmites australis during heavy metal remediation[J]. Science of the Total Environment, 2021, 758: 143643. doi: 10.1016/j.scitotenv.2020.143643
|
[42] |
韩闯. 污泥生物炭水热制备及其对染料脱色研究[D]. 上海: 东华大学, 2017.
|
[43] |
WEI J, LIU Y T, LI J, et al. Adsorption and co-adsorption of tetracycline and doxycycline by one-step synthesized iron loaded sludge biochar[J]. Chemosphere, 2019, 236: 124254. doi: 10.1016/j.chemosphere.2019.06.224
|
[44] |
王凯. 四氧化三铁基复合纳米颗粒的制备及其生物应用研究[D]. 北京: 北京科技大学, 2019.
|
[45] |
李飞. 农林废弃物生物炭的制备、改性及在Cd污染治理中的应用[D]. 南京: 东南大学, 2018.
|
[46] |
ZHANG M, GAO B, VARNOOSFADERANI S, et al. Preparation and characterization of a novel magnetic biochar for arsenic removal[J]. Bioresource Technology, 2013, 130: 457-462. doi: 10.1016/j.biortech.2012.11.132
|
[47] |
LI P R, YU J, HUANGFU Z X, et al. Applying modified biochar with nZVI/nFe3O4 to immobilize Pb in contaminated soil[J]. Environmental Science and Pollution Research, 2020, 27(19): 24495-24506. doi: 10.1007/s11356-020-08458-0
|
[48] |
PHILIPPOU K, ANASTOPOULOS I, DOSCHE C, et al. Synthesis and characterization of a novel Fe3O4-loaded oxidized biochar from pine needles and its application for uranium removal. Kinetic, thermodynamic, and mechanistic analysis[J]. Journal of Environmental Management, 2019, 252: 109677. doi: 10.1016/j.jenvman.2019.109677
|
[49] |
段浩楠, 吕宏虹, 王夫美, 等. 生物炭/铁复合材料的制备及其在环境修复中的应用研究进展[J]. 环境化学, 2020, 39(3): 774-790. doi: 10.7524/j.issn.0254-6108.2019103109
|
[50] |
朱浩. 新型磁性纳米材料的设计合成及固定化脂肪酶研究[D]. 兰州: 兰州大学, 2013.
|
[51] |
WANG K, SUN Y B, TANG J C, et al. Aqueous Cr(VI) removal by a novel ball milled Fe0-biochar composite: Role of biochar electron transfer capacity under high pyrolysis temperature[J]. Chemosphere, 2020, 241: 125044. doi: 10.1016/j.chemosphere.2019.125044
|
[52] |
LYU H H, GAO B, HE F, et al. Ball-milled carbon nanomaterials for energy and environmental applications[J]. Acs Sustainable Chemistry & Engineering, 2017, 5(11): 9568-9585.
|
[53] |
杜毅, 王向宇. 新型纳米零价铁的绿色合成和改性工艺研究进展[J]. 环境化学, 2016, 35(2): 337-347. doi: 10.7524/j.issn.0254-6108.2016.02.2015081702
|
[54] |
ZHANG P, O'CONNOR D, WANG Y N, et al. A green biochar/iron oxide composite for methylene blue removal[J]. Journal of Hazardous Materials, 2020, 384: 121286. doi: 10.1016/j.jhazmat.2019.121286
|
[55] |
MANDAL S, PU S Y, SHANGGUAN L X, et al. Synergistic construction of green tea biochar supported nZVI for immobilization of lead in soil: A mechanistic investigation[J]. Environment International, 2020, 135: 105374. doi: 10.1016/j.envint.2019.105374
|
[56] |
祝方, 刘涛, 石建惠. 绿色合成纳米零价铁铜淋洗修复Cr(Ⅵ)污染土壤[J]. 环境工程, 2019, 37(4): 172-176. doi: 10.13205/j.hjgc.201904033
|
[57] |
WANG S S, GAO B, ZIMMERMAN A R, et al. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite[J]. Bioresource Technology, 2015, 175: 391-395. doi: 10.1016/j.biortech.2014.10.104
|
[58] |
WANG Y M, WANG S W, WANG C Q, et al. Simultaneous Immobilization of Soil Cd(II) and As(V) by Fe-Modified Biochar[J]. International Journal of Environmental Research and Public Health, 2020, 17(3): 827. doi: 10.3390/ijerph17030827
|
[59] |
FAN J, CHEN X, XU Z B, et al. One-pot synthesis of nZVI-embedded biochar for remediation of two mining arsenic-contaminated soils: Arsenic immobilization associated with iron transformation[J]. Journal of Hazardous Materials, 2020, 398: 122901. doi: 10.1016/j.jhazmat.2020.122901
|
[60] |
ZHU S S, HO S H, HUANG X C, et al. Magnetic Nanoscale zerovalent iron assisted biochar: interfacial chemical behaviors and heavy metals remediation performance[J]. ACS Sustainable Chemistry & Engineering, 2017, 5: 9673-9682.
|
[61] |
曹媛, 李晓东, 彭昌盛, 等. 浸渍热解法制备铁改性生物炭活化过硫酸盐去除2, 4-二硝基甲苯, 环境工程, 2021, 39(11): 135-142.
|
[62] |
WU C, CUI M Q, XUE S G, et al. Remediation of arsenic-contaminated paddy soil by iron-modified biochar[J]. Environmental Science and Pollution Research, 2018, 25(21): 20792-20801. doi: 10.1007/s11356-018-2268-8
|
[63] |
QIN S N, FAN H D, JIA L, et al. Molecular structure analysis and mercury adsorption mechanism of iron-based modified biochar[J]. Energy Fuels, 2022, 36: 3184-3200. doi: 10.1021/acs.energyfuels.1c03832
|
[64] |
MANDAL S, PU S Y, HE L L, et al. Biochar induced modification of graphene oxide & nZVI and its impact on immobilization of toxic copper in soil[J]. Environmental Pollution, 2020, 259: 113851. doi: 10.1016/j.envpol.2019.113851
|
[65] |
SU H J, FANG Z Q, TSANG P E, et al. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil[J]. Environmental Pollution, 2016, 214: 94-100. doi: 10.1016/j.envpol.2016.03.072
|
[66] |
PEI G P, ZHU Y, WEN J G, et al. Vinegar residue supported nanoscale zero-valent iron: Remediation of hexavalent chromium in soil[J]. Environmental Pollution, 2020, 256: 113407. doi: 10.1016/j.envpol.2019.113407
|
[67] |
LIU J, LIU A R, ZHANG W X. The influence of polyelectrolyte modification on nanoscale zero-valent iron (nZVI): Aggregation, sedimentation, and reactivity with Ni(II) in water[J]. Chemical Engineering Journal, 2016, 303: 268-274. doi: 10.1016/j.cej.2016.05.132
|
[68] |
ZHAO L, CAO X D, MASEK O, et al. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures[J]. Journal of Hazardous Materials, 2013, 256: 1-9.
|
[69] |
王向前, 胡学玉, 陈窈君, 等. 生物炭及改性生物炭对水环境中重金属的吸附固定作用[J]. 环境工程, 2016, 34(12): 32-37. doi: 10.13205/j.hjgc.201612007
|
[70] |
QIAO J T, LIU T X, WANG X Q, et al. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils[J]. Chemosphere, 2018, 195: 260-271. doi: 10.1016/j.chemosphere.2017.12.081
|
[71] |
林昌华, 马崇坚, 丘勇飞. 铁改性生物质炭对镉污染土壤中小白菜镉吸收及产量和品质的影响[J]. 广东农业科学, 2019, 46(9): 70-76. doi: 10.16768/j.issn.1004-874X.2019.09.010
|
[72] |
WU C, SHI L Z, XUE S G, et al. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils[J]. Science of the Total Environment, 2019, 647: 1158-1168. doi: 10.1016/j.scitotenv.2018.08.087
|
[73] |
MANDAL S, PU S Y, WANG X K, et al. Hierarchical porous structured polysulfide supported nZVI/biochar and efficient immobilization of selenium in the soil[J]. Science of the Total Environment, 2020, 708: 134831. doi: 10.1016/j.scitotenv.2019.134831
|
[74] |
ZHU H H, CHEN C, XU C, et al. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China[J]. Environmental Pollution, 2016, 219: 99-106. doi: 10.1016/j.envpol.2016.10.043
|
[75] |
YAO Y, ZHOU H, YAN X L, et al. The Fe3O4-modified biochar reduces arsenic availability in soil and arsenic accumulation in indica rice (Oryza sativa L. )[J]. Environmental Science and Pollution Research, 2021, 28(14): 18050-18061. doi: 10.1007/s11356-020-11812-x
|
[76] |
熊静, 郭丽莉, 李书鹏, 等. 镉砷污染土壤钝化剂配方优化及效果研究[J]. 农业环境科学学报, 2019, 38(8): 1909-1918. doi: 10.11654/jaes.2019-0629
|
[77] |
ATA-UL-KARIM S T, CANG L, WANG Y J, et al. Effects of soil properties, nitrogen application, plant phenology, and their interactions on plant uptake of cadmium in wheat[J]. Journal of Hazardous Materials, 2020, 384: 121452. doi: 10.1016/j.jhazmat.2019.121452
|
[78] |
YANG Z H, ZHANG X M, JIANG Z, et al. Reductive materials for remediation of hexavalent chromium contaminated soil-A review[J]. Science of the Total Environment, 2021, 773: 145654. doi: 10.1016/j.scitotenv.2021.145654
|
[79] |
ZHANG Y C, FAN J J, FU M L, et al. Adsorption antagonism and synergy of arsenate(V) and cadmium(II) onto Fe-modified rice straw biochars[J]. Environmental Geochemistry and Health, 2019, 41(4): 1755-1766. doi: 10.1007/s10653-017-9984-8
|
[80] |
李江遐, 吴林春, 张军, 等. 生物炭修复土壤重金属污染的研究进展[J]. 生态环境学报, 2015, 24(12): 2075-2081. doi: 10.16258/j.cnki.1674-5906.2015.12.024
|
[81] |
LI L F, ZHU C X, LIU X S, et al. Biochar amendment immobilizes arsenic in farmland and reduces its bioavailability[J]. Environmental Science and Pollution Research, 2018, 25(34): 34091-34102. doi: 10.1007/s11356-018-3021-z
|
[82] |
XUE Q, RAN Y, TAN Y Z, et al. Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate: Implications for arsenic mobility and fate in natural environments[J]. Chemosphere, 2019, 224: 103-110. doi: 10.1016/j.chemosphere.2019.02.118
|
[83] |
刘书四. 改性生物炭对水稻土壤中镉和砷生物有效性以及根际微生态的影响[D]. 广州: 华南理工大学, 2017.
|
[84] |
KLUEPFEL L, KEILUWEIT M, KLEBER M, et al. Redox properties of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2014, 48(10): 5601-5611.
|
[85] |
XU H J, WANG X H, LI H, et al. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape[J]. Environmental Science & Technology, 2014, 48(16): 9391-9399.
|
[86] |
CHEN S S, AMELIA-ELENA R, MALLA S P, et al. Promoting interspecies electron transfer with biochar[J]. Scientific reports, 2014, 4: 5019.
|
[87] |
ZHENG C J, YANG Z H, SI M Y, et al. Application of biochars in the remediation of chromium contamination: Fabrication, mechanisms, and interfering species[J]. Journal of Hazardous Materials, 2021, 407: 124376. doi: 10.1016/j.jhazmat.2020.124376
|
[88] |
DOU X, LI R, ZHAO B, et al. Arsenate removal from water by zero-valent iron/activated carbon galvanic couples[J]. Journal of Hazardous Materials, 2010, 182(1): 108-114.
|
[89] |
KUMPIENE J, ORE S, RENELLA G, et al. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil[J]. Environmental Pollution, 2006, 144(1): 62-69. doi: 10.1016/j.envpol.2006.01.010
|
[90] |
LIU Z G, ZHANG F, HOEKMAN S K, et al. Homogeneously dispersed zerovalent iron nanoparticles supported on hydrochar-derived porous carbon: simple, in situ synthesis and use for dechlorination of PCBs[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(6): 3261-3267.
|
[91] |
YUAN X H, XUE N D, HAN Z G. A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years[J]. Journal of Environmental Sciences, 2021, 101(3): 217-226.
|
[92] |
杨兰, 李冰, 王昌全, 等. 改性生物炭材料对稻田原状和外源镉污染土钝化效应[J]. 环境科学, 2016, 37(9): 3562-3574. doi: 10.13227/j.hjkx.2016.09.039
|
[93] |
GONG Y W, QU Y J, YANG S H, et al. Status of arsenic accumulation in agricultural soils across China (1985-2016)[J]. Environmental Research, 2020, 186: 109525. doi: 10.1016/j.envres.2020.109525
|
[94] |
LI X Y, ZHANG J R, MA J, et al. Status of chromium accumulation in agricultural soils across China (1989-2016)[J]. Chemosphere, 2020, 256: 127036. doi: 10.1016/j.chemosphere.2020.127036
|
[95] |
ZHU Y E, LI H, WU Y, et al. Effects of surface-modified biochars and activated carbon on the transformation of soil inorganic nitrogen and growth of maize under chromium stress[J]. Chemosphere, 2019, 227: 124-132. doi: 10.1016/j.chemosphere.2019.04.042
|
[96] |
厉有为, 梁婵娟. 三种油料作物对土壤Pb污染的耐受性与积累[J]. 环境化学, 2021, 40(5): 1602-1610. doi: 10.7524/j.issn.0254-6108.2020010601
|
[97] |
潘亚男, 陈灿, 王欣, 等. 凤眼莲源生物炭对土壤As、Hg、Cd溶出特性与化学形态的影响[J]. 环境科学学报, 2017, 37(6): 2342-2350. doi: 10.13671/j.hjkxxb.2016.0476
|
[98] |
PAN H, YANG X, CHEN H B, et al. Pristine and iron-engineered animal and plant-derived biochars enhanced bacterial abundance and immobilized arsenic and lead in a contaminated soil[J]. Science of the Total Environment, 2021, 763: 144218. doi: 10.1016/j.scitotenv.2020.144218
|
[99] |
PENG D H, WU B, TAN H, et al. Effect of multiple iron-based nanoparticles on availability of lead and iron, and micro-ecology in lead contaminated soil[J]. Chemosphere, 2019, 228: 44-53. doi: 10.1016/j.chemosphere.2019.04.106
|
[100] |
WANG C, TAN H, LI H, et al. Mechanism study of Chromium influenced soil remediated by an uptake-detoxification system using hyperaccumulator, resistant microbe consortium, and nano iron complex[J]. Environmental Pollution, 2020, 257: 113558. doi: 10.1016/j.envpol.2019.113558
|
[101] |
IRSHAD M K, CHEN C, NOMAN A, et al. Goethite-modified biochar restricts the mobility and transfer of cadmium in soil-rice system[J]. Chemosphere, 2020, 242: 125152. doi: 10.1016/j.chemosphere.2019.125152
|
[102] |
LIU Q Q, SHENG Y Q, WANG W J, et al. Efficacy and microbial responses of biochar-nanoscale zero-valent during in-situ remediation of Cd-contaminated sediment[J]. Journal of Cleaner Production, 2021, 287: 125076. doi: 10.1016/j.jclepro.2020.125076
|
[103] |
孟繁健, 朱宇恩, 李华, 等. 改性生物炭负载nZVI对土壤Cr(VI)的修复差异研究[J]. 环境科学学报, 2017, 37(12): 4715-4723. doi: 10.13671/j.hjkxxb.2017.0240
|
[104] |
WEN E G, YANG X, CHEN H B, et al. Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil[J]. Journal of Hazardous Materials, 2021, 407: 124344. doi: 10.1016/j.jhazmat.2020.124344
|
[105] |
殷西婷. 添加改性生物炭对砷污染土壤中砷形态及土壤酶活性的影响研究[D]. 泰安: 山东农业大学, 2018.
|
[106] |
ZHANG Y, ZHAO C C, CHEN G L, et al. Response of soil microbial communities to additions of straw biochar, iron oxide, and iron oxide–modified straw biochar in an arsenic-contaminated soil[J]. Environmental Science and Pollution Research, 2020, 27(19): 23761-23768. doi: 10.1007/s11356-020-08829-7
|
[107] |
LIU S S, LU Y X, YANG C, et al. Effects of modified biochar on rhizosphere microecology of rice (Oryza sativa L. ) grown in As-contaminated soil[J]. Environmental Science and Pollution Research International, 2017, 24(30): 23815-23823. doi: 10.1007/s11356-017-9994-1
|