[1] 童蕾, 曾梦玲, 李民敬, 等. 铁锰氧化物对地下水环境中金霉素的降解 [J]. 环境化学, 2016, 35(5): 917-924. doi: 10.7524/j.issn.0254-6108.2016.05.2015120102 TONG L, ZENG M L, LI M J, et al. Degradation of chlorotetracycline by iron and manganese oxides under simulated groundwater environment [J]. Environmental Chemistry, 2016, 35(5): 917-924(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.05.2015120102
[2] 胡敏, 李芳柏. 土壤微生物铁循环及其环境意义 [J]. 土壤学报, 2014, 51(4): 683-698. HU M, LI F B. Soil microbe mediated iron cycling and its environmental implication [J]. Acta Pedologica Sinica, 2014, 51(4): 683-698(in Chinese).
[3] 罗瑶, 李珊, 刘立虎, 等. 水锰矿与Fe2+的相互作用与转化过程 [J]. 岩石矿物学杂志, 2016, 35(4): 703-711. doi: 10.3969/j.issn.1000-6524.2016.04.010 LUO Y, LI S, LIU L H, et al. Interaction and transformation processes of manganite and Fe2+ [J]. Acta Petrologica et Mineralogica, 2016, 35(4): 703-711(in Chinese). doi: 10.3969/j.issn.1000-6524.2016.04.010
[4] LUO Y, LIU L H, QIAO W C, et al. Facile crystal-structure-controlled synthesis of iron oxides for adsorbents and anode materials of lithium batteries [J]. Materials Chemistry and Physics, 2016, 170: 239-245. doi: 10.1016/j.matchemphys.2015.12.044
[5] PEDERSEN H D, POSTMA D, JAKOBSEN R, et al. Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II) [J]. Geochimica et Cosmochimica Acta, 2005, 69(16): 3967-3977. doi: 10.1016/j.gca.2005.03.016
[6] HOCHELLA M F J, LOWER S K, MAURICE P A, et al. Nanominerals, mineral nanoparticles, and Earth systems [J]. Science, 2008, 319(5870): 1631-1635. doi: 10.1126/science.1141134
[7] PALUMBO B, BELLANCA A, NERI R, et al. Trace metal partitioning in Fe-Mn nodules from Sicilian soils, Italy [J]. Chemical Geology, 2001, 173(4): 257-269. doi: 10.1016/S0009-2541(00)00284-9
[8] TEBO B M, BARGAR J R, CLEMENT B G, et al. BIOGENIC MANGANESE OXIDES: Properties and mechanisms of formation [J]. Annual Review of Earth and Planetary Sciences, 2004, 32: 287-328. doi: 10.1146/annurev.earth.32.101802.120213
[9] 鲁安怀, 卢晓英, 任子平, 等. 天然铁锰氧化物及氢氧化物环境矿物学研究 [J]. 地学前缘, 2000, 7(2): 473-483. doi: 10.3321/j.issn:1005-2321.2000.02.015 LU A H, LU X Y, REN Z P, et al. New advances in environmental mineralogy of natural oxides and hydroxides of iron and manganese [J]. Earth Science Frontiers, 2000, 7(2): 473-483(in Chinese). doi: 10.3321/j.issn:1005-2321.2000.02.015
[10] JUNTA J L, HOCHELLA M F. Manganese (II) oxidation at mineral surfaces: A microscopic and spectroscopic study [J]. Geochimica et Cosmochimica Acta, 1994, 58(22): 4985-4999. doi: 10.1016/0016-7037(94)90226-7
[11] GAO T Y, SHEN Y G, JIA Z H, et al. Interaction mechanisms and kinetics of ferrous ion and hexagonal birnessite in aqueous systems [J]. Geochemical Transactions, 2015, 16(1): 16. doi: 10.1186/s12932-015-0031-3
[12] KRISHNAMURTI G S R, HUANG P M. Influence of manganese oxide minerals on the formation of iron Oxides [J]. Clays and Clay Minerals, 1988, 36(5): 467-475. doi: 10.1346/CCMN.1988.0360513
[13] VILLINSKI J E, O'DAY P A, CORLEY T L, et al. In situ spectroscopic and solution analyses of the reductive dissolution of MnO2 by Fe(II) [J]. Environmental Science & Technology, 2001, 35(6): 1157-1163.
[14] NESBITT H W, CANNING G W, BANCROFT G M. XPS study of reductive dissolution of 7Å-birnessite by H3AsO3, with constraints on reaction mechanism [J]. Geochimica et Cosmochimica Acta, 1998, 62(12): 2097-2110. doi: 10.1016/S0016-7037(98)00146-X
[15] POSTMA D, APPELO C A J. Reduction of Mn-oxides by ferrous iron in a flow system: Column experiment and reactive transport modeling [J]. Geochimica et Cosmochimica Acta, 2000, 64(7): 1237-1247. doi: 10.1016/S0016-7037(99)00356-7
[16] SIEBECKER M, MADISON A S, LUTHER G W. Reduction kinetics of polymeric (soluble) manganese (IV) oxide (MnO2) by ferrous iron (Fe2+) [J]. Aquatic Geochemistry, 2015, 21(2/3/4): 143-158.
[17] POSTMA D. Concentration of Mn and separation from Fe in sediments-I. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10 ℃ [J]. Geochimica et Cosmochimica Acta, 1985, 49(4): 1023-1033. doi: 10.1016/0016-7037(85)90316-3
[18] MYERS C R, NEALSON K H. Microbial reduction of manganese oxides: Interactions with iron and sulfur [J]. Geochimica et Cosmochimica Acta, 1988, 52(11): 2727-2732. doi: 10.1016/0016-7037(88)90041-5
[19] MCKENZIE R M. The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese [J]. Mineralogical Magazine, 1971, 38(296): 493-502. doi: 10.1180/minmag.1971.038.296.12
[20] LUO Y, TAN W F, SUIB S L, et al. Dissolution and phase transformation processes of hausmannite in acidic aqueous systems under anoxic conditions [J]. Chemical Geology, 2018, 487: 54-62. doi: 10.1016/j.chemgeo.2018.04.016
[21] 罗瑶, 李珊, 谭文峰, 等. 水锰矿氧化水溶性硫化物过程及其影响因素 [J]. 环境科学, 2016, 37(4): 1539-1545. doi: 10.13227/j.hjkx.2016.04.045 LUO Y, LI S, TAN W F, et al. Oxidation process of dissolvable sulfide by manganite and its influencing factors [J]. Environmental Science, 2016, 37(4): 1539-1545(in Chinese). doi: 10.13227/j.hjkx.2016.04.045
[22] GAO T Y, SHI Y, LIU F, et al. Oxidation process of dissolvable sulfide by synthesized todorokite in aqueous systems [J]. Journal of Hazardous Materials, 2015, 290: 106-116. doi: 10.1016/j.jhazmat.2015.02.018
[23] KIRILLOV S A, ALEKSANDROVA V S, LISNYCHA T V, et al. Oxidation of synthetic hausmannite (Mn3O4) to manganite (MnOOH) [J]. Journal of Molecular Structure, 2009, 928(1/2/3): 89-94.
[24] RAHIMI S, MOATTARI R M, RAJABI L, et al. Iron oxide/hydroxide (α, γ-FeOOH) nanoparticles as high potential adsorbents for lead removal from polluted aquatic media [J]. Journal of Industrial and Engineering Chemistry, 2015, 23: 33-43. doi: 10.1016/j.jiec.2014.07.039
[25] HAN X, LI Y L, GU J D. Oxidation of As(Ⅲ) by MnO2 in the absence and presence of Fe(Ⅱ) under acidic conditions [J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 368-379. doi: 10.1016/j.gca.2010.10.010
[26] RICHMOND W R, LOAN M, MORTON J, et al. Arsenic removal from aqueous solution via ferrihydrite crystallization control [J]. Environmental Science & Technology, 2004, 38(8): 2368-2372.
[27] CHIRIŢĂ P, DESCOSTES M, SCHLEGEL M L. Oxidation of FeS by oxygen-bearing acidic solutions [J]. Journal of Colloid and Interface Science, 2008, 321(1): 84-95. doi: 10.1016/j.jcis.2008.01.024
[28] REDDY T R, FRIERDICH A J, BEARD B L, et al. The effect of pH on stable iron isotope exchange and fractionation between aqueous Fe(Ⅱ) and goethite [J]. Chemical Geology, 2015, 397: 118-127. doi: 10.1016/j.chemgeo.2015.01.018
[29] 刘承帅, 李芳柏, 陈曼佳, 等. Fe(Ⅱ)催化水铁矿晶相转变过程中Pb的吸附与固定 [J]. 化学学报, 2017, 75(6): 621-628. doi: 10.6023/A17030093 LIU C S, LI F B, CHEN M J, et al. Adsorption and stabilization of lead during Fe(Ⅱ)-catalyzed phase transformation of ferrihydrite [J]. Acta Chimica Sinica, 2017, 75(6): 621-628(in Chinese). doi: 10.6023/A17030093
[30] SCHOTT J, BERNER R A. X-ray photoelectron studies of the mechanism of iron silicate dissolution during weathering [J]. Geochimica et Cosmochimica Acta, 1983, 47(12): 2233-2240. doi: 10.1016/0016-7037(83)90046-7
[31] ROSSO K M, MORGAN J J. Outer-sphere electron transfer kinetics of metal ion oxidation by molecular oxygen [J]. Geochimica et Cosmochimica Acta, 2002, 66(24): 4223-4233. doi: 10.1016/S0016-7037(02)01040-2
[32] KING D W. Role of carbonate speciation on the oxidation rate of Fe(II) in aquatic systems [J]. Environmental Science & Technology, 1998, 32(19): 2997-3003.
[33] 李颖, 顾雪元. 土壤中锰氧化物的形态及其化学提取方法综述 [J]. 环境化学, 2022, 41(1): 9-21. doi: 10.7524/j.issn.0254-6108.2021061603 LI Y, GU X Y. Soil manganese oxides and its extraction methods: A review [J]. Environmental Chemistry, 2022, 41(1): 9-21(in Chinese). doi: 10.7524/j.issn.0254-6108.2021061603
[34] SUN Q, CUI P X, FAN T T, et al. Effects of Fe(Ⅱ) on Cd(Ⅱ) immobilization by Mn(Ⅲ)-rich δ-MnO2 [J]. Chemical Engineering Journal, 2018, 353: 167-175. doi: 10.1016/j.cej.2018.07.120
[35] 刘立虎, 樊萍, 孙学成, 等. 电化学驱动水钠锰矿高效吸附去除混合重金属离子 [J]. 环境化学, 2022, 41(2): 740-748. LIU L H, FAN P, SUN X C, et al. High-efficiency adsorption removal for multiple heavy metal ions using birnessite under electrochemical drive [J]. Environmental Chemistry, 2022, 41(2): 740-748(in Chinese).
[36] SCHAEFER M V, HANDLER R M, SCHERER M M. Fe(Ⅱ) reduction of pyrolusite (β-MnO2) and secondary mineral evolution [J]. Geochemical Transactions, 2017, 18: 7. doi: 10.1186/s12932-017-0045-0
[37] RADY O, LIU L H, YANG X, et al. Adsorption and catalytic oxidation of arsenite on Fe-Mn nodules in the presence of oxygen [J]. Chemosphere, 2020, 259: 127503. doi: 10.1016/j.chemosphere.2020.127503