[1] ZHOU N, CHEN H G, XI J T, et al. Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization [J]. Bioresource Technology, 2017, 232: 204-210. doi: 10.1016/j.biortech.2017.01.074
[2] LI L J, HOLM P E, MARCUSSEN H, et al. Release of cadmium, copper and lead from urban soils of Copenhagen [J]. Environmental Pollution, 2014, 187: 90-97. doi: 10.1016/j.envpol.2013.12.016
[3] WONG C S C, LI X D, THORNTON I. Urban environmental geochemistry of trace metals [J]. Environmental Pollution, 2006, 142(1): 1-16. doi: 10.1016/j.envpol.2005.09.004
[4] LI X D, POON C S, LIU P S. Heavy metal contamination of urban soils and street dusts in HongKong [J]. Applied Geochemistry, 2001, 16(11/12): 1361-1368.
[5] ZHANG M K, WANG M Q, LIU X M, et al. Characterization of soil quality under vegetable production along an urban-rural gradient [J]. Pedosphere, 2003, 13(2): 173-180.
[6] 于洋, 崔胜辉, 林剑艺, 等. 城市废弃物处理温室气体排放研究: 以厦门市为例 [J]. 环境科学, 2012, 33(9): 3288-3294. YU Y, CUI S H, LIN J Y, et al. Study on greenhouse gas emissions from urban waste disposal system: A case study in Xiamen [J]. Environmental Science, 2012, 33(9): 3288-3294(in Chinese).
[7] 吴文雨, 唐剑锋, 郑思俊, 等. 城市源生物炭对城市土壤溶解性有机质及重金属有效态的影响[J]. 应用技术学报(已接收). WU W Y, TANG J F, ZHENG S J, et al. The effect of urban biochar on urban soil DOM characteristics and heavy metal availability [J]. Journal of Technology(Received) (in Chinese).
[8] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review [J]. Chemosphere, 2014, 99: 19-33. doi: 10.1016/j.chemosphere.2013.10.071
[9] ZHOU X, CHEN Z H, LI Z R, et al. Impacts of aeration and biochar addition on extracellular polymeric substances and microbial communities in constructed wetlands for low C/N wastewater treatment: Implications for clogging [J]. Chemical Engineering Journal, 2020, 396: 125349. doi: 10.1016/j.cej.2020.125349
[10] JIA L X, WU W Z, ZHANG J, et al. Insight into heavy metals (Cr and Pb) complexation by dissolved organic matters from biochar: Impact of zero-valent iron [J]. Science of the Total Environment, 2021, 793: 148469. doi: 10.1016/j.scitotenv.2021.148469
[11] SUN J L, DROSOS M, MAZZEI P, et al. The molecular properties of biochar carbon released in dilute acidic solution and its effects on maize seed germination [J]. Science of the Total Environment, 2017, 576: 858-867. doi: 10.1016/j.scitotenv.2016.10.095
[12] DONG X L, MA L Q, GRESS J, et al. Enhanced Cr(Ⅵ) reduction and As(Ⅲ) oxidation in ice phase: Important role of dissolved organic matter from biochar [J]. Journal of Hazardous Materials, 2014, 267: 62-70. doi: 10.1016/j.jhazmat.2013.12.027
[13] LI M, ZHANG A F, WU H M, et al. Predicting potential release of dissolved organic matter from biochars derived from agricultural residues using fluorescence and ultraviolet absorbance [J]. Journal of Hazardous Materials, 2017, 334: 86-92. doi: 10.1016/j.jhazmat.2017.03.064
[14] LI G, KHAN S, IBRAHIM M, et al. Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium [J]. Journal of Hazardous Materials, 2018, 348: 100-108. doi: 10.1016/j.jhazmat.2018.01.031
[15] SOJA G, WIMMER B, ROSNER F, et al. Compost and biochar interactions with copper immobilisation in copper-enriched vineyard soils [J]. Applied Geochemistry, 2018, 88: 40-48. doi: 10.1016/j.apgeochem.2017.06.004
[16] XU H C, ZOU L, GUAN D X, et al. Molecular weight-dependent spectral and metal binding properties of sediment dissolved organic matter from different origins [J]. Science of the Total Environment, 2019, 665: 828-835. doi: 10.1016/j.scitotenv.2019.02.186
[17] 于振亚, 杜晓丽, 高参, 等. 道路雨水径流溶解性有机物与重金属结合作用分析 [J]. 环境科学学报, 2018, 38(8): 3004-3011. doi: 10.13671/j.hjkxxb.2018.0225 YU Z Y, DU X L, GAO C, et al. Complexation between heavy metals and dissolved organic matters in road stormwater runoffs [J]. Acta Scientiae Circumstantiae, 2018, 38(8): 3004-3011(in Chinese). doi: 10.13671/j.hjkxxb.2018.0225
[18] WASKA H, KOSCHINSKY A, RUIZ CHANCHO M J, et al. Investigating the potential of solid-phase extraction and Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) for the isolation and identification of dissolved metal-organic complexes from natural waters [J]. Marine Chemistry, 2015, 173: 78-92. doi: 10.1016/j.marchem.2014.10.001
[19] LEENHEER J A. Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters [J]. Environmental Science & Technology, 1981, 15(5): 578-587.
[20] FANG Z, HE C, LI Y Y, et al. Fractionation and characterization of dissolved organic matter (DOM) in refinery wastewater by revised phase retention and ion-exchange adsorption solid phase extraction followed by ESI FT-ICR MS [J]. Talanta, 2017, 162: 466-473. doi: 10.1016/j.talanta.2016.10.064
[21] AFTAB B, SHIN H S, HUR J. Exploring the fate and oxidation behaviors of different organic constituents in landfill leachate upon Fenton oxidation processes using EEM-PARAFAC and 2D-COS-FTIR [J]. Journal of Hazardous Materials, 2018, 354: 33-41. doi: 10.1016/j.jhazmat.2018.04.059
[22] ZHOU J, WANG J J, BAUDON A, et al. Improved fluorescence excitation-emission matrix regional integration to quantify spectra for fluorescent dissolved organic matter [J]. Journal of Environmental Quality, 2013, 42(3): 925-930. doi: 10.2134/jeq2012.0460
[23] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter [J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
[24] RYAN D K, WEBER J H. Fluorescence quenching titration for determination of complexing capacities and stability constants of fulvic acid [J]. Analytical Chemistry, 1982, 54(6): 986-990. doi: 10.1021/ac00243a033
[25] LUSTER J, LLOYD T, SPOSITO G, et al. Multi-wavelength molecular fluorescence spectrometry for quantitative characterization of copper(Ⅱ) and aluminum(Ⅲ) complexation by dissolved organic matter [J]. Environmental Science & Technology, 1996, 30(5): 1565-1574.
[26] LI Y Y, XU C M, CHUNG K H, et al. Molecular characterization of dissolved organic matter and its subfractions in refinery process water by Fourier transform ion cyclotron resonance mass spectrometry [J]. Energy & Fuels, 2015, 29(5): 2923-2930.
[27] 曹昌丽, 梁梦琦, 何桂英, 等. 城镇化河流溶解性有机质的荧光特性与水质相关性: 以宁波市北仑区芦江为例 [J]. 环境科学, 2018, 39(4): 1560-1567. CAO C L, LIANG M Q, HE G Y, et al. Fluorescent dissolved organic matter and its correlation with water quality in a urban river: A case study of the Lujiang river in Beilun, Ningbo [J]. Environmental Science, 2018, 39(4): 1560-1567(in Chinese).
[28] BI H N, TANG L, GAO X, et al. Spectroscopic analysis on the binding interaction between tetracycline hydrochloride and bovine proteins β-casein, α-lactalbumin [J]. Journal of Luminescence, 2016, 178: 72-83. doi: 10.1016/j.jlumin.2016.05.048
[29] LI W W, ZHANG F F, YE Q, et al. Composition and copper binding properties of aquatic fulvic acids in eutrophic Taihu Lake, China [J]. Chemosphere, 2017, 172: 496-504. doi: 10.1016/j.chemosphere.2017.01.008
[30] IRVING H, WILLIAMS R J P. Order of stability of metal complexes [J]. Nature, 1948, 162(4123): 746-747. doi: 10.1038/162746a0
[31] HUR J, KIM G. Comparison of the heterogeneity within bulk sediment humic substances from a stream and reservoir via selected operational descriptors [J]. Chemosphere, 2009, 75(4): 483-490. doi: 10.1016/j.chemosphere.2008.12.056
[32] NGUYEN H V M, HUR J, SHIN H S. Changes in spectroscopic and molecular weight characteristics of dissolved organic matter in a river during a storm event [J]. Water, Air, & Soil Pollution, 2010, 212(1/2/3/4): 395-406.
[33] HE X S, XI B D, WEI Z M, et al. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste [J]. Chemosphere, 2011, 82(4): 541-548. doi: 10.1016/j.chemosphere.2010.10.057
[34] HUR J, LEE B M. Characterization of binding site heterogeneity for copper within dissolved organic matter fractions using two-dimensional correlation fluorescence spectroscopy [J]. Chemosphere, 2011, 83(11): 1603-1611. doi: 10.1016/j.chemosphere.2011.01.004
[35] NODA I, OZAKI Y. Two-dimensional correlation spectroscopy: applications in vibrational and optical spectroscopy[M]. Chichester, UK: John Wiley & Sons, Ltd, 2004.
[36] CHEN W, HABIBUL N, LIU X Y, et al. FTIR and synchronous fluorescence heterospectral two-dimensional correlation analyses on the binding characteristics of copper onto dissolved organic matter [J]. Environmental Science & Technology, 2015, 49(4): 2052-2058.
[37] BAKEN S, DEGRYSE F, VERHEYEN L, et al. Metal complexation properties of freshwater dissolved organic matter are explained by its aromaticity and by anthropogenic ligands [J]. Environmental Science & Technology, 2011, 45(7): 2584-2590.
[38] YUAN D H, GUO X J, WEN L, et al. Detection of Copper (II) and Cadmium (II) binding to dissolved organic matter from macrophyte decomposition by fluorescence excitation-emission matrix spectra combined with parallel factor analysis [J]. Environmental Pollution, 2015, 204: 152-160. doi: 10.1016/j.envpol.2015.04.030
[39] CHEN B F, ZHAO M, LIU C, et al. Comparison of copper binding properties of DOM derived from fresh and pyrolyzed biomaterials: Insights from multi-spectroscopic investigation [J]. Science of the Total Environment, 2020, 721: 137827. doi: 10.1016/j.scitotenv.2020.137827
[40] XING J, XU G R, LI G B. Analysis of the complexation behaviors of Cu(II) with DOM from sludge-based biochars and agricultural soil: Effect of pyrolysis temperature [J]. Chemosphere, 2020, 250: 126184. doi: 10.1016/j.chemosphere.2020.126184