[1] |
LU N, WANG L Q, LV M, et al. Graphene-based nanomaterials in biosystems [J]. Nano Research, 2019, 12(2): 247-264. doi: 10.1007/s12274-018-2209-3
|
[2] |
陶玥彤, 李茹莹. 生物电化学系统对河道沉积物中抗生素的强化去除 [J]. 环境科学学报, 2021, 41(4): 1383-1392.
TAO Y T, LI R Y. Enhanced removal of antibiotics from the river sediments by bioelectrochemical systems [J]. Acta Scientiae Circumstantiae, 2021, 41(4): 1383-1392(in Chinese).
|
[3] |
郑乐媚, 关亦玮, 文定, 等. BiOBr/GO复合纳米光催化剂的制备及可见光下降解环丙沙星废水 [J]. 环境化学, 2020, 39(8): 2137-2146.
ZHENG L M, GUAN Y W, WEN D, et al. Preparation of BiOBr/GO composition nanocatalysts and application of degradation of ciprofloxacin wastewater in visible light [J]. Environmental Chemistry, 2020, 39(8): 2137-2146(in Chinese).
|
[4] |
CHEN J F, HU Y Y, HUANG W T, et al. Biodegradation of oxytetracycline and electricity generation in microbial fuel cell with in situ dual graphene modified bioelectrode [J]. Bioresource Technology, 2018, 270: 482-488. doi: 10.1016/j.biortech.2018.09.060
|
[5] |
CHEN J F, YANG Y W, LIU Y Y, et al. Bacterial community shift and antibiotics resistant genes analysis in response to biodegradation of oxytetracycline in dual graphene modified bioelectrode microbial fuel cell [J]. Bioresource Technology, 2019, 276: 236-243. doi: 10.1016/j.biortech.2019.01.006
|
[6] |
LIANG B, CHENG H Y, KONG D Y, et al. Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode [J]. Environmental Science & Technology, 2013, 47(10): 5353-5361.
|
[7] |
WU D, SUN F Q, ZHOU Y. Degradation of chloramphenicol with novel metal foam electrodes in bioelectrochemical systems [J]. Electrochimica Acta, 2017, 240: 136-145. doi: 10.1016/j.electacta.2017.04.059
|
[8] |
ZHANG S, YANG X L, LI H, et al. Degradation of sulfamethoxazole in bioelectrochemical system with power supplied by constructed wetland-coupled microbial fuel cells [J]. Bioresource Technology, 2017, 244: 345-352. doi: 10.1016/j.biortech.2017.07.143
|
[9] |
HOU Y P, LUO H P, LIU G L, et al. Improved hydrogen production in the microbial electrolysis cell by inhibiting methanogenesis using ultraviolet irradiation [J]. Environmental Science & Technology, 2014, 48(17): 10482-10488.
|
[10] |
HOU Y P, YUAN G Y, QIN S M, et al. Photocathode optimization and microbial community in the solar-illuminated bio-photoelectrochemical system for nitrofurazone degradation [J]. Bioresource Technology, 2020, 302: 122761. doi: 10.1016/j.biortech.2020.122761
|
[11] |
HOU Y P, GAN Y Y, YU Z B, et al. Solar promoted azo dye degradation and energy production in the bio-photoelectrochemical system with a g-C3N4/BiOBr heterojunction photocathode [J]. Journal of Power Sources, 2017, 371: 26-34. doi: 10.1016/j.jpowsour.2017.10.033
|
[12] |
TU L L, HOU Y P, YUAN G Y, et al. Bio-photoelectrochemcial system constructed with BiVO4/RGO photocathode for 2, 4- dichlorophenol degradation: BiVO4/RGO optimization, degradation performance and mechanism [J]. Journal of Hazardous Materials, 2020, 389: 121917. doi: 10.1016/j.jhazmat.2019.121917
|
[13] |
QIN S M, HOU Y P, YUAN G Y, et al. Different refractory organic substances degradation and microbial community shift in the single-chamber bio-photoelectrochemical system [J]. Bioresource Technology, 2020, 307: 123176. doi: 10.1016/j.biortech.2020.123176
|
[14] |
周奥, 曹新强, 顾彦, 等. 以生物炭为内核的BC@BiOBr催化剂的制备及可见光光催化性能 [J]. 环境化学, 2019, 38(2): 235-242.
ZHOU A, CAO X Q, GU Y, et al. Preparation of BC@BiOBr catalyst with biochar as core and its visible light photocatalytic performance [J]. Environmental Chemistry, 2019, 38(2): 235-242(in Chinese).
|
[15] |
李冬梅, 梁奕聪, 卓涌淇, 等. 铋修饰BiOBr/g-C3N4异质结光催化剂合成及其可见光催化性能研究 [J]. 环境科学学报, 2021, 41(3): 960-968.
LI D M, LIANG Y C, ZHUO Y Q, et al. Synthesis of Bi-decorated BiOBr/g-C3N4 heterojunction photocatalyst and its visible light-driven photocatalytic performance [J]. Acta Scientiae Circumstantiae, 2021, 41(3): 960-968(in Chinese).
|
[16] |
叶少琛, 徐向阳, 何光裕, 等. CuxZn1-xS/RGO复合材料的制备及其光催化降解环丙沙星性能研究[J]. 环境化学, 2020, 39(7): 1977-1984.
YE S C, XU X Y, HE G Y, et al. Preparation and performance of CuxZn1-xS/RGO composite for photocatalytic degradation of CIP[J]. Environmental Chemistry, 2020, 39(7): 1977-1984(in Chinese). Environmental chemistry, 2020, 39(07): 1977-1984 (in Chinese).
|
[17] |
WANG H, YONG D Y, CHEN S C, et al. Oxygen-vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation [J]. Journal of the American Chemical Society, 2018, 140(5): 1760-1766. doi: 10.1021/jacs.7b10997
|
[18] |
HILL D M, MEYER H M 3rd, WEAVER J H, et al. Cu adatom interactions with single- and polycrystalline Bi2Ca1+xSr2-xCu2O8+y and YBa2Cu3O7-x [J]. Physical Review. B, Condensed Matter, 1988, 38(16): 11331-11336. doi: 10.1103/PhysRevB.38.11331
|
[19] |
LV X C, YAN D Y S, LAM F L Y, et al. Solvothermal synthesis of copper-doped BiOBr microflowers with enhanced adsorption and visible-light driven photocatalytic degradation of norfloxacin [J]. Chemical Engineering Journal, 2020, 401: 126012. doi: 10.1016/j.cej.2020.126012
|
[20] |
SENGOTTAIYAN C, KALAM N A, JAYAVEL R, et al. BiVO4/RGO hybrid nanostructure for high performance electrochemical supercapacitor [J]. Journal of Solid State Chemistry, 2019, 269: 409-418. doi: 10.1016/j.jssc.2018.10.011
|
[21] |
WANG L, LIU Y L, WANG C, et al. Anoxic biodegradation of triclosan and the removal of its antimicrobial effect in microbial fuel cells [J]. Journal of Hazardous Materials, 2018, 344: 669-678. doi: 10.1016/j.jhazmat.2017.10.021
|
[22] |
YAN W F, XIAO Y, YAN W D, et al. The effect of bioelectrochemical systems on antibiotics removal and antibiotic resistance genes: A review [J]. Chemical Engineering Journal, 2019, 358: 1421-1437. doi: 10.1016/j.cej.2018.10.128
|
[23] |
LV L Y, LI W G, WU C D, et al. Microbial community composition and function in a pilot-scale anaerobic-anoxic-aerobic combined process for the treatment of traditional Chinese medicine wastewater [J]. Bioresource Technology, 2017, 240: 84-93. doi: 10.1016/j.biortech.2017.01.053
|
[24] |
BRIDGES C M, GAGE D J. Development and application of aerobic, chemically defined media for Dysgonomonas [J]. Anaerobe, 2021, 67: 102302. doi: 10.1016/j.anaerobe.2020.102302
|
[25] |
王思祺, 严伟富, 赵峰, 等. 基于微生物电化学技术的萘普生高盐废水处理 [J]. 环境化学, 2020, 39(4): 1137-1144.
WANG S Q, YAN W F, ZHAO F, et al. Treatment of naproxen high-salt wastewater based on microbial electrochemical technology [J]. Environmental Chemistry, 2020, 39(4): 1137-1144(in Chinese).
|
[26] |
MORRIS J M, JIN S, CRIMI B, et al. Microbial fuel cell in enhancing anaerobic biodegradation of diesel [J]. Chemical Engineering Journal, 2009, 146(2): 161-167. doi: 10.1016/j.cej.2008.05.028
|
[27] |
ALEXANDRINO D A M, MUCHA A P, ALMEIDA C M R, et al. Biodegradation of the veterinary antibiotics enrofloxacin and ceftiofur and associated microbial community dynamics [J]. Science of the Total Environment, 2017, 581/582: 359-368. doi: 10.1016/j.scitotenv.2016.12.141
|