[1] ZHU B, LIANG C, YAN S, et al. Association between serum thallium in early pregnancy and risk of gestational diabetes mellitus: The Ma’anshan birth cohort study[J]. Journal of Trace Elements in Medicine and Biology, 2019, 52: 151-156. doi: 10.1016/j.jtemb.2018.12.011
[2] BLUSZTAJN J, NIELSEN S G, MARSCHALL H R, et al. Thallium isotope systematics in volcanic rocks from St. Helena-Constraints on the origin of the HIMU reservoir[J]. Chemical Geology, 2018, 476: 292-301. doi: 10.1016/j.chemgeo.2017.11.025
[3] AMIN A S, ELSHARJAWY A M, KASSEM M A, Determination of thallium at ultra-trace levels in water and biological samples using solid phase spectrophotometry[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 110: 262-268
[4] 张忠, 张宝贵, 龙江平, 等. 中国铊矿床开发过程中铊环境污染研究, 中国科学(D辑: 地球科学)[J]. 1997, 04 : 331-336
[5] FARAG M R, ALAGAWANY M, KHALIL S R, et al. Astragalus membranaceus polysaccharides modulate growth, hemato-biochemical indices, hepatic antioxidants, and expression of HSP70 and apoptosis-related genes in Oreochromis niloticus exposed to sub-lethal thallium toxicity[J]. Fish & Shellfish Immunology, 2021, 118: 251-260.
[6] LI H, LI X, LONG J, et al. Oxidation and removal of thallium and organics from wastewater using a zero-valent-iron-based Fenton-like technique[J]. Journal of Cleaner Production, 2019, 221: 89-97. doi: 10.1016/j.jclepro.2019.02.205
[7] RUIZ-GARCÍA M, VILLALOBOS M, ANTELO J, et al. Tl(I) adsorption behavior on K-illite and on humic acids[J]. Applied Geochemistry, 2022, 138: 105220. doi: 10.1016/j.apgeochem.2022.105220
[8] 李祥平, 张飞, 齐剑英, 等. 土壤有机质对铊在土壤中吸附-解吸行为的影响, 环境工程学报[J]. 2012, 6 (11): 4245-4250
[9] MEMON S Q, MEMON N, SOLANGI A R, et al. Sawdust: A green and economical sorbent for thallium removal[J]. Chemical Engineering Journal, 2008, 140(1): 235-240.
[10] ADIO S O, ASIF M, MOHAMMED A R I, et al. Poly (amidoxime) modified magnetic activated carbon for chromium and thallium adsorption: Statistical analysis and regeneration[J]. Process Safety and Environmental Protection, 2019, 121: 254-262. doi: 10.1016/j.psep.2018.10.008
[11] 任刚, 余燕, 李明玉, 等. 改性沸石去除微污染原水中的铊(Tl), 环境工程学报[J]. 2015, 9(5): 2149-2154
[12] REHMAN S, ULLAH N, KAMALI A R, et al. Study of thallium(III) adsorption onto multiwall carbon nanotubes[J]. New Carbon Materials, 2012, 27(6): 409-415. doi: 10.1016/S1872-5805(12)60024-9
[13] LIU W, ZHANG P, BORTHWICK A G L, et al. Adsorption mechanisms of thallium(I) and thallium(III) by titanate nanotubes: Ion-exchange and co-precipitation[J]. Journal of Colloid And Interface Science, 2014, 423: 67-75. doi: 10.1016/j.jcis.2014.02.030
[14] ZHANG L D, HUANG T C, ZHANG M K, et al. Studies on the capability and behavior of adsorption of thallium on nano-Al2O3[J]. Journal of Hazardous Materials, 2008, 157(2): 352-357.
[15] ZHANG G, FAN F, LI X, et al. Superior adsorption of thallium(I) on titanium peroxide: Performance and mechanism[J]. Chemical Engineering Journal, 2018, 331: 471-479. doi: 10.1016/j.cej.2017.08.053
[16] 黎秀菀, 李伙生, 张平, 等. MnO2@矿渣去除废水中的铊, 环境工程学报[J]. 2018, 12(3): 720-730
[17] TANG W, SU Y, LI Q, et al. Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation[J]. Water Research, 2013, 47(11): 3624-3634. doi: 10.1016/j.watres.2013.04.023
[18] FENG Y, GONG J L, ZENG G M, et al. Adsorption of Cd(II) and Zn(II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents[J]. Chemical Engineering Journal, 2010, 162(2): 487-494. doi: 10.1016/j.cej.2010.05.049
[19] FU D, HE Z, SU S, et al. Fabrication of α-FeOOH decorated graphene oxide-carbon nanotubes aerogel and its application in adsorption of arsenic species[J]. Journal of Colloid And Interface Science, 2017, 505: 105-114. doi: 10.1016/j.jcis.2017.05.091
[20] TANG J, WU W, YU L, et al. Study on adsorption properties and mechanism of thallium onto titanium-iron magnetic adsorbent[J]. Science of The Total Environment, 2019, 694: 133625. doi: 10.1016/j.scitotenv.2019.133625
[21] YU Y J, ZHU X H, ZHU, J Y, et al. Rapid and simultaneous analysis of tetrabromobisphenol A and hexabromocyclododecane in water by direct immersion solid phase microextraction: Uniform design to explore factors[J]. Ecotoxicology and Environmental Safety, 2019, 176: 364-369. doi: 10.1016/j.ecoenv.2019.03.104
[22] YANG Z H, WU W L, YU L, et al. Fabrication and characterization of magnetically responsive Fe3O4@TiO2 core-shell adsorbent for enhanced thallium removal[J]. Environmental Science and Pollution Research, 2020, 27(24): 30518-30529. doi: 10.1007/s11356-020-09144-x
[23] LI L Z, LIU C, MA R X, et al. Rapid removal of thallium from water by a new magnetic nano-composite using graphene oxide for efficient separation[J]. International Biodeterioration & Biodegradation, 2021, 161: 105245.
[24] XIONG Z, ZHENG H, HU Y, et al. Selective adsorption of Congo red and Cu(II) from complex wastewater by core-shell structured magnetic carbon@zeolitic imidazolate frameworks-8 nanocomposites[J]. Separation and Purification Technology, 2021, 277: 119053. doi: 10.1016/j.seppur.2021.119053
[25] TIAN T, LIU M, LI Y, et al. β-Cyclodextrin carbon-based nanoparticles with a core–shell–shell structure for efficient adsorption of crystal violet and bisphenol A[J]. Particuology, 2022, 62: 88-97. doi: 10.1016/j.partic.2021.04.004
[26] KURIAN M, THANKACHAN S. Structural diversity and applications of spinel ferrite core-Shell nanostructures- A review[J]. Open Ceramics, 2021, 8: 100179. doi: 10.1016/j.oceram.2021.100179
[27] FU B, LI J, JIANG H, et al. Modulation of electric dipoles inside electrospun BaTiO3@TiO2 core-shell nanofibers for enhanced piezo-photocatalytic degradation of organic pollutants[J]. Nano Energy, 2022, 93: 106841. doi: 10.1016/j.nanoen.2021.106841
[28] TATARCHUK T, MIRONYUK I, KOTSYUBYNSKY V, et al. Structure, morphology and adsorption properties of titania shell immobilized onto cobalt ferrite nanoparticle core[J]. Journal of Molecular Liquids, 2020, 297: 111757. doi: 10.1016/j.molliq.2019.111757
[29] PARK J, LAM S S, PARK Y K, et al. Fabrication of Ni/TiO2 visible light responsive photocatalyst for decomposition of oxytetracycline[J]. Environmental Research, 2023, 216: 114657.
[30] PU Y, YANG X, ZHENG H, et al. Adsorption and desorption of thallium(I) on multiwalled carbon nanotubes[J]. Chemical Engineering Journal, 2013, 219: 403-410. doi: 10.1016/j.cej.2013.01.025
[31] JOHN A L, VIRARAGHAVAN T. Removal of thallium from aqueous solutions by modified Aspergillus niger biomass[J]. Bioresource Technology, 2008, 99(3): 618-625. doi: 10.1016/j.biortech.2006.12.038
[32] ŞENOL Z M, ULUSOY U. Thallium adsorption onto polyacryamide–aluminosilicate composites: A Tl isotope tracer study[J]. Chemical Engineering Journal, 2010, 162(1): 97-105. doi: 10.1016/j.cej.2010.05.005
[33] VINCENT T, TAULEMESSE J M, DAUVERGNE A, et al. Thallium(I) sorption using Prussian blue immobilized in alginate capsules[J]. Carbohydrate Polymers, 2014, 99: 517-526. doi: 10.1016/j.carbpol.2013.08.076
[34] CHEN M, WU P, YU L, et al. FeOOH-loaded MnO2 nano-composite: An efficient emergency material for thallium pollution incident[J]. Journal of Environmental Management, 2017, 192: 31-38.
[35] LI H, LI X, XIAO T, et al. Efficient removal of thallium(I) from wastewater using flower-like manganese dioxide coated magnetic pyrite cinder[J]. Chemical Engineering Journal, 2018, 353: 867-877. doi: 10.1016/j.cej.2018.07.169
[36] SOLTANI R, MARJANI A, SHIRAZIAN S. Facile one-pot synthesis of thiol-functionalized mesoporous silica submicrospheres for Tl(I) adsorption: Isotherm, kinetic and thermodynamic studies[J]. Journal of Hazardous Materials, 2019, 371: 146-155. doi: 10.1016/j.jhazmat.2019.02.076
[37] LIU Y, ZHANG J, HUANG H, et al. Treatment of trace thallium in contaminated source waters by ferrate pre-oxidation and poly aluminium chloride coagulation[J]. Separation and Purification Technology, 2019, 227: 115663. doi: 10.1016/j.seppur.2019.06.001
[38] YANG K, YI H, TANG X, et al. Reducing the competitive adsorption between SO2 and NO by Al2O3@TiO2 core-shell structure adsorbent[J]. Chemical Engineering Journal, 2019, 364: 420-427. doi: 10.1016/j.cej.2019.02.009
[39] ZHANG Z, XIA K, PAN Z, et al. Removal of mercury by magnetic nanomaterial with bifunctional groups and core-shell structure: Synthesis, characterization and optimization of adsorption parameters[J]. Applied Surface Science, 2020, 500: 143970. doi: 10.1016/j.apsusc.2019.143970
[40] HUANG X, XIAO J, YI Q, et al. Construction of core-shell Fe3O4@GO-CoPc photo-Fenton catalyst for superior removal of tetracycline: The role of GO in promotion of H2O2 to •OH conversion[J]. Journal of Environmental Management, 2022, 308: 114613. doi: 10.1016/j.jenvman.2022.114613
[41] QIU P, ZHAO T, ZHU X, et al. A confined micro-reactor with a movable Fe3O4 core and a mesoporous TiO2 shell for a photocatalytic Fenton-like degradation of bisphenol A[J]. Chinese Chemical Letters, 2021, 32(4): 1456-1461. doi: 10.1016/j.cclet.2020.09.061
[42] ZHANG J, QIU S, FENG H, et al. Efficient degradation of tetracycline using core–shell Fe@Fe2O3-CeO2 composite as novel heterogeneous electro-Fenton catalyst[J]. Chemical Engineering Journal, 2022, 428: 131403. doi: 10.1016/j.cej.2021.131403
[43] LI L Z, LIU C, MA R X, et al. Enhanced oxidative and adsorptive removal of thallium(I) using Fe3O4@TiO2 decorated RGO nanosheets as persulfate activator and adsorbent[J]. Separation and Purification Technology, 2021, 271: 118827. doi: 10.1016/j.seppur.2021.118827
[44] XU H, LIU P, ZHANG W, et al. Structure, stability, electronic and magnetic properties of monometallic Pd, Pt, and bimetallic Pd-Pt core–shell nanoparticles[J]. Chemical Physics, 2020, 539: 110953. doi: 10.1016/j.chemphys.2020.110953
[45] LEE D E, DEVTHADE V, MORU S, et al. Magnetically sensitive TiO2 hollow sphere/Fe3O4 core-shell hybrid catalyst for high-performance sunlight-assisted photocatalytic degradation of aqueous antibiotic pollutants[J]. Journal of Alloys and Compounds, 2022, 902: 163612. doi: 10.1016/j.jallcom.2022.163612