[1] |
AO H T, CAO W, HONG Y X, et al. Adsorption of sulfate ion from water by zirconium oxide-modified biochar derived from pomelo peel[J]. Science of the Total Environment, 2020, 708: 135092. doi: 10.1016/j.scitotenv.2019.135092
|
[2] |
DING M, ZENG H. Multi-agent evolutionary game in the recycling utilization of sulfate-rich wastewater[J]. International Journal of Environmental Research and Public Health, 2022, 19(14): 8770. doi: 10.3390/ijerph19148770
|
[3] |
赵蕾. Fe3O4磁性纳米材料的研制及其对水中污染物的去除研究[D]. 太原: 山西大学, 2021.
|
[4] |
CHEN X, ZHENG L, DONG X, et al. Sources and mixing of sulfate contamination in the water environment of a typical coal mining city, China: Evidence from stable isotope characteristics[J]. Environmental Geochemistry Health, 2020, 42: 2865-2879. doi: 10.1007/s10653-020-00525-2
|
[5] |
WANG Y, HAO Y, GAO Z, et al. Characteristics and the origins of the main chemical components in mine water in the Xishan mining area, North China[J]. Environmental Earth Sciences, 2020, 81(8): 1-13.
|
[6] |
BADMUS S O, OYEHAN T A, SALEH T A. Synthesis of a novel polymer-assisted AlNiMn nanomaterial for efficient removal of sulfate ions from contaminated water[J]. Journal of Polymers and the Environment, 2021, 29(9): 2840-2854. doi: 10.1007/s10924-021-02077-7
|
[7] |
HASSAN W, FAISAL A, ABED E, et al. New composite sorbent for removal of sulfate ions from simulated and real groundwater in the batch and continuous tests[J]. Molecules, 2021, 26(14): 4356. doi: 10.3390/molecules26144356
|
[8] |
HAN Y H, WU C T, FU X L, et al. Sulfate removal mechanism by internal circulation iron-carbon micro-electrolysis[J]. Separation and Purification Technology, 2021, 279: 119762. doi: 10.1016/j.seppur.2021.119762
|
[9] |
DOLATABAD A A, GANJIDOUST H, AYATI B. Application of waste-derived activated red mud/base treated rice husk composite in sulfate adsorption from aqueous solution[J]. International Journal of Environmental Research, 2022, 16(1): 1-16. doi: 10.1007/s41742-021-00380-8
|
[10] |
ZHU Q, HU Z Q, RUAN M Y. Characteristics of sulfate-reducing bacteria and organic bactericides and their potantial to mitigate pollution caused by coal gangue acidification[J]. Environmental Technology & Innovation, 2022, 20: 101142.
|
[11] |
BI H B, WANG C X, LIN Q Z, et al. Pyrolysis characteristics, artificial neural network modeling and environmental impact of coal gangue and biomass by TG-FTIR[J]. Science of the Total Environment, 2021, 751: 142293. doi: 10.1016/j.scitotenv.2020.142293
|
[12] |
HUO X, JIA X, SONG C, et al. Investigation of co-pyrolysis characteristics of modified coal gangue and biomass[J]. Thermochimica Acta, 2021, 705: 179033. doi: 10.1016/j.tca.2021.179033
|
[13] |
ZHAO R, WANG B, ZHANG X, et al. Insights into Cr(Ⅵ) removal mechanism in water by facile one-step pyrolysis prepared coal gangue-biochar composite[J]. Social Science Electronic Publishing, 2022, 299: 134334.
|
[14] |
WANG B, MA Y, LEE X, et al. Environmental-friendly coal gangue-biochar composites reclaiming phosphate from water as a slow-release fertilizer[J]. Science of the Total Environment, 2020, 758: 143664.
|
[15] |
QIU B B, DUAN F. Synthesis of industrial solid wastes/biochar composites and their use for adsorption of phosphate: From surface properties to sorption mechanism[J]. Colloids and Surface A:Physicochemical and Engineering Aspects, 2019, 571: 86-93.
|
[16] |
LIAN G, Wang B, Lee X, et al. Enhanced removal of hexavalent chromium by engineered biochar composite fabricated from phosphogypsum and distillers grains[J]. Science of the Total Environment, 2019, 697: 134119. doi: 10.1016/j.scitotenv.2019.134119
|
[17] |
薛炳松, 谢童, 王珊, 等. 镧改性生物炭对砷、镉的吸附特征研究[J]. 地球与环境, 2022, 50(2): 261-270.
|
[18] |
杨奇亮, 吴平霄. 改性多孔生物炭的制备及其对水中四环素的吸附性能研究[J]. 环境科学学报, 2019, 39(12): 3973-3984. doi: 10.13671/j.hjkxxb.2019.0235
|
[19] |
郭明帅, 王菲, 张学良, 等. 改性生物炭活化过硫酸盐对水中苯和氯苯的去除机制[J]. 中国环境科学, 2020, 40(12): 5280-5289. doi: 10.3969/j.issn.1000-6923.2020.12.021
|
[20] |
Ahmed M J, Hameed B H. Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants: A review[J]. Journal of Cleaner Production, 2020: 121762.
|
[21] |
王光泽, 曾薇, 李帅帅. 铈改性水葫芦生物炭对磷酸盐的吸附特性[J]. 环境科学, 2021, 42(10): 4815-4825.
|
[22] |
马凯悦, 张浩, 宋宁宁, 等. 氧化老化玉米秸秆生物炭吸附镉机理研究[J]. 农业环境科学学报, 2022, 41(6): 1230-1240. doi: 10.11654/jaes.2021-1282
|
[23] |
宋泽峰, 石晓倩, 刘卓, 等. 芦苇生物炭的制备、表征及其吸附铜离子与双酚A的性能[J]. 环境化学, 2020, 39(8): 2196-2205. doi: 10.7524/j.issn.0254-6108.2019052001
|
[24] |
余剑, 丁恒, 张智霖, 等. 改性菱角壳生物炭吸附水中土霉素性能与机理[J]. 中国环境科学, 2021, 41(12): 5688-5700. doi: 10.3969/j.issn.1000-6923.2021.12.025
|
[25] |
党娅琴, 邢英. 稻壳生物炭吸附无机汞和甲基汞的特征研究[J/OL][J]. 地球与环境, 2020, 50(13): 1-10.
|
[26] |
孙彤, 郝瑞霞, 武旭源, 等. 天然沸石定向合成A型分子筛及其脱氮性能[J]. 中国环境科学, 2020, 40(2): 623-630. doi: 10.3969/j.issn.1000-6923.2020.02.019
|
[27] |
王美杰. 球形ZrO(OH)2/AlOOH复合材料制备及吸附硫酸根性能研究[D]. 天津: 天津大学, 2019.
|
[28] |
ALAGHA O, MANZAR M S, ZUBAIR M, et al. Comparative adsorptive removal of phosphate and nitrate from wastewater using biochar-MgAl LDH nanocomposites: Coexisting anions effect and mechanistic studies[J]. Nanomaterials, 2020, 10(2): 336. doi: 10.3390/nano10020336
|
[29] |
LIU T, XU S R, LU S Y, et al. A review on removal of organophosphorus pesticides in constructed wetland: Performance, mechanism and influencing factors[J]. Science of the Total Environment, 2019, 651: 2247-2268. doi: 10.1016/j.scitotenv.2018.10.087
|
[30] |
邓玉, 刘斌, 晏琪涵, 等. 一步法制备Mg改性玉米芯生物炭吸附磷酸盐研究[J]. 水处理技术, 2021, 47(4): 35-39. doi: 10.16796/j.cnki.1000-3770.2021.04.007
|
[31] |
ALI S, RIZWAN M, SHAKOOR M B, et al. High sorption efficiency for As(Ⅲ) and As(Ⅴ) from aqueous solutions using novel almond shell biochar[J]. Chemosphere, 2020, 243: 125330. doi: 10.1016/j.chemosphere.2019.125330
|
[32] |
LEE N, HONG S H, LEE C G, et al. Conversion of cattle manure into functional material to remove selenate from wastewater[J]. Chemosphere, 2021, 278: 130398. doi: 10.1016/j.chemosphere.2021.130398
|
[33] |
徐楚天, 李大鹏, 张帅, 等. 磁性硅藻土负载纳米过氧化钙对水中磷酸盐吸附[J]. 环境科学, 2020, 41(2): 792-800.
|