[1] |
KLAUBER C, GRAFE M, POWER G. Bauxite residue issues: II. options for residue utilization[J]. Hydrometallurgy, 2011, 108(1/2): 11-32.
|
[2] |
ZHU F, XUE S G, HARTLEY W, et al. Novel predictors of soil genesis following natural weathering processes of bauxite residues[J]. Environmental Science and Pollution Research, 2016, 23(3): 2856-2863. doi: 10.1007/s11356-015-5537-9
|
[3] |
JONES B E H, HAYNES R J. Bauxite Processing Residue: A Critical Review of Its Formation, Properties, Storage, and Revegetation[J]. Critical Reviews in Environmental Science & Technology, 2011, 41(3): 271-315.
|
[4] |
KHAIRUL M A, ZANGANEH J, MOGHTADERI B. The composition, recycling and utilisation of Bayer red mud[J]. Resources, Conservation & Recycling, 2019, 141: 483-498.
|
[5] |
XUE S G, KONG X F, ZHU F, et al. Proposal for management and alkalinity transformation of bauxite residue in China[J]. Environmental Science and Pollution Research, 2016, 23(13): 12822-12834. doi: 10.1007/s11356-016-6478-7
|
[6] |
CARLO E D, BOULLEMENT A, COURTNEY R. A field assessment of bauxite residue rehabilitation strategies[J]. Science of the Total Environment, 2019, 663: 915-926. doi: 10.1016/j.scitotenv.2019.01.376
|
[7] |
XUE S G, ZHU F, KONG X F, et al. A review of the characterization and revegetation of bauxite residues (Red mud)[J]. Environmental Science and Pollution Research, 2016, 23(2): 1120-1132. doi: 10.1007/s11356-015-4558-8
|
[8] |
BRAY A W, STEWART D I, COURTNEY R, et al. Sustained Bauxite Residue Rehabilitation with Gypsum and Organic Matter 16 years after Initial Treatment[J]. Environmental Science & Technology, 2018, 52(1): 152-161.
|
[9] |
CARLO E D, CHEN C R, HAYNES R J, et al. Soil quality and vegetation performance indicators for sustainable rehabilitation of bauxite residue disposal areas: a review[J]. Soil Research, 2019, 57: 419-446. doi: 10.1071/SR18348
|
[10] |
Dong Y P, SHAO Y F, LIU A J, et al. Insight of soil amelioration process of bauxite residues amended with organic materials from different sources[J]. Environmental Science and Pollution Research, 2019, 26: 29379-29387. doi: 10.1007/s11356-019-06007-y
|
[11] |
ESFANDBOD M, PHILLIPS I R, MILLER B, et al. Aged acidic biochar increases nitrogen retention and decreases ammonia volatilization in alkaline bauxite residue sand[J]. Ecological Engineering, 2017, 98: 157-165. doi: 10.1016/j.ecoleng.2016.10.077
|
[12] |
RASHTI M R, ESFANDBOD M, PHILLIPS I R, et al. Rhizosphere management by biochar and leaching improved plant performance in fresh bauxite residue sand[J]. Journal of Cleaner Production, 2019, 219: 66-74. doi: 10.1016/j.jclepro.2019.02.013
|
[13] |
RASHTI M R, ESFANDBOD M, PHILLIPS I R, et al. Aged biochar alters nitrogen pathways in bauxite-processing residue sand: Environmental impact and biogeochemical mechanisms[J]. Environmental Pollution, 2019, 247: 438-446. doi: 10.1016/j.envpol.2019.01.034
|
[14] |
CHAVEZ-GARCIA E, SIEBE C. Rehabilitation of a highly saline-sodic soil using a rubble barrier and organic amendments[J]. Soil and Tillage Research, 2019, 189: 176-188. doi: 10.1016/j.still.2019.01.003
|
[15] |
JONES B E H, HAYNES R J, PHILLIPS I R. Addition of an organic amendment and/or residue mud to bauxite residue sand in order to improve its properties as a growth medium[J]. Journal of Environmental Management, 2012, 95(1): 29-38.
|
[16] |
SANTINI T C, FEY M V. Assessment of Technosol formation and in situ remediation in capped alkaline tailings[J]. Catena, 2016, 136: 17-29. doi: 10.1016/j.catena.2015.08.006
|
[17] |
鲁如坤. 土壤农业化学分析方法[J]. 北京:中国农业科技出版社, 2000: 266-271.
|
[18] |
林先贵. 土壤微生物研究原理与方法[J]. 北京:高等教育出版社, 2010: 134-158.
|
[19] |
董梦阳, 董远鹏, 徐子文, 等. 赤泥改良过程中微生物群落及酶活性恢复研究[J]. 中国环境科学, 2021, 41: 913-922. doi: 10.3969/j.issn.1000-6923.2021.02.045
|
[20] |
关松荫. 土壤酶及其研究法[J]. 北京:农业出版社, 1986: 294-322.
|
[21] |
GRAFE M, POWER G, KLAUBER C. Bauxite residue issues: III. Alkalinity and associated chemistry[J]. Hydrometallurgy, 2011, 108(1/2): 60-79.
|
[22] |
ZHANG J T, CHUN-SHENG M U. Effects of saline and alkaline stresses on the germination, growth, photosynthesis, ionic balance and anti-oxidant system in an alkali-tolerant leguminous forage Lathyrus quinquenervius(Plant Nutrition)[J]. Soil Science & Plant Nutrition, 2009.
|
[23] |
朱锋, 韩福松, 薛生国, 等. 氧化铝赤泥堆场团聚体的分形特征[J]. 中国有色金属学报, 2016, 26(6): 1316-1323.
|
[24] |
黄昌勇. 土壤学[J]. 北京:中国农业出版社, 2000: 80-89.
|
[25] |
薛生国, 李晓飞, 孔祥峰, 等. 赤泥碱性调控研究进展[J]. 环境科学学报, 2017, 37(8): 2815-2828. doi: 10.13671/j.hjkxxb.2017.0144
|
[26] |
JONES B E H, HAYNES R J, PHILLIPS I R. Influence of organic waste and residue mud additions on chemical, physical and microbial properties of bauxite residue sand[J]. Environmental Science & Pollution Research, 2011, 18(2): 199-211.
|
[27] |
SMITH R, TONGWAY D, TIGHE M, et al. When does organic carbon induce aggregate stability in vertosols?[J]. Agriculture Ecosystems & Environment, 2015, 201: 92-100.
|
[28] |
TEJADA M, GARCIA C, GONZALEZ J L, et al. Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil[J]. Soil Biology & Biochemistry, 2006, 38(6): 1413-1421.
|
[29] |
REN J, REN X Q, CHEN J, et al. Humic-mineral interactions modulated by pH conditions in bauxite residues–Implications in stable aggregate formation[J]. Geoderma, 2021, 385: 114856. doi: 10.1016/j.geoderma.2020.114856
|
[30] |
李佳佳. 秸秆-膨润土-PAM对土壤理化性质和作物生长的调控效应[D]. 重庆: 西南大学, 2011.
|
[31] |
ELIZAVETA K, EVGENY M. Aromaticity and humification of dissolved organic matter (lysimetricexperiment)[J]. 期刊名?2015, 178-182.
|
[32] |
SINHA R K, AGARWAL S, CHAUHAN K, et al. The wonders of earthworms & its vermicompost in farm production: Charles Darwin's 'friends of farmers', with potential to replace destructive chemical fertilizers[J]. Agricultural Sciences, 2010, 1(2): 76-94. doi: 10.4236/as.2010.12011
|
[33] |
GE T D, YUAN H Z, ZHAO Z W, et al. Tracking the photosynthesized carbon input into soil organic carbon pools in a rice soil fertilized with nitrogen[J]. Plant & Soil, 2015, 392(1/2): 17-25.
|
[34] |
LI Y, HAYNES R J, CHANDRAWANA I, et al. Properties of seawater neutralized bauxite residues and changes in chemical, physical and microbial properties induced by additions of gypsum and organic matter[J]. Journal of Environmental Management, 2018, 223: 489-494.
|
[35] |
ANAM G B, REDDY M S, AHN Y H. Characterization of Trichoderma asperellum RM-28 for its sodic/saline-alkali tolerance and plant growth promoting activities to alleviate toxicity of red mud[J]. Science of the Total Environment, 2019, 662: 462-469. doi: 10.1016/j.scitotenv.2019.01.279
|
[36] |
FOURRIER C, LUGLIA M, HENNEBERT P, et al. Effects of increasing concentrations of unamended and gypsum modified bauxite residues on soil microbial community functions and structure – A mesocosm study[J]. Ecotoxicology and Environmental Safety, 2020, 201: 110847. doi: 10.1016/j.ecoenv.2020.110847
|
[37] |
滕菲, 杨雪莲, 李凤梅, 等. 微生物对环境中难降解有机污染物共代谢作用[J]. 微生物学杂志, 2016, 36(3): 6. doi: 10.3969/j.issn.1005-7021.2016.03.015
|
[38] |
JONES B E, HAYNES R, PHILLIPS I. Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties[J]. Journal of Environmental Management, 2010, 91(11): 2281-2288. doi: 10.1016/j.jenvman.2010.06.013
|