[1] |
SANDU C, POPESCU M, ROSALES E, et al. Electrokinetic-Fenton technology for the remediation of hydrocarbons historically polluted sites[J]. Chemosphere, 2016, 156: 347-56. doi: 10.1016/j.chemosphere.2016.04.133
|
[2] |
YUE S, GUO D F, CHANG Y Z, et al. Zero-valent iron activated persulfate remediation of polycyclic aromatic hydrocarbon-contaminated soils: An in situ pilot-scale study[J]. Chemical Engineering Journal, 2019, 355: 65-75. doi: 10.1016/j.cej.2018.08.126
|
[3] |
RONALD W P. Toxicity of polyaromatic hydrocarbons other than benzo (a) pyrene: a review[J]. Journal of Toxicology:Cutaneous and Ocular Toxicology, 2000, 19(1): 55-67. doi: 10.3109/15569520009051478
|
[4] |
RANC B, FAURE P, CROZE V, et al. Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): A review[J]. Journal of Hazardous Materials, 2016, 312: 280-297. doi: 10.1016/j.jhazmat.2016.03.068
|
[5] |
程家丽, 黄启飞, 魏世强, 等. 我国环境介质中多环芳烃的分布及其生态风险[J]. 环境工程学报, 2007, 1(4): 138-144. doi: 10.3969/j.issn.1673-9108.2007.04.032
|
[6] |
ZHAO C, DONG Y, FENG Y, et al. Thermal desorption for remediation of contaminated soil: A review[J]. Chemosphere, 2019, 221: 841-855. doi: 10.1016/j.chemosphere.2019.01.079
|
[7] |
杨勇, 张蒋维, 陈恺, 等. 化学氧化法治理焦化厂PAHs污染土壤[J]. 环境工程学报, 2016, 10(1): 427-431. doi: 10.12030/j.cjee.20160171
|
[8] |
苏梦缘, 王红旗, 李艺, 等. 多环芳烃降解菌菌群构建及其适宜降解环境条件的确定[J]. 环境工程学报, 2017, 11(2): 1192-1198. doi: 10.12030/j.cjee.201509056
|
[9] |
FENG N X, YU J, ZHAO H M, et al. Efficient phytoremediation of organic contaminants in soils using plant-endophyte partnerships[J]. Science of the Total Environment, 2017, 583: 352-368. doi: 10.1016/j.scitotenv.2017.01.075
|
[10] |
赵丹, 廖晓勇, 阎秀兰, 等. 不同化学氧化剂对焦化污染场地多环芳烃的修复效果[J]. 环境科学, 2011, 32(3): 857-863. doi: 10.13227/j.hjkx.2011.03.033
|
[11] |
WALDEMER R H, TRATNYEK P G. Kinetics of contaminant degradation by permanganate[J]. Environmental Science and Technology, 2006, 40(3): 1055-1061. doi: 10.1021/es051330s
|
[12] |
BENDOUZ M, DIONNE J, TRAN L H, et al. Polycyclic aromatic hydrocarbon oxidation from concentrates issued from an attrition process of polluted soil using the Fenton reagent and permanganate[J]. Water, Air, & Soil Pollution, 2017, 228(3): 115.
|
[13] |
LIAO X Y, WU Z Y, LI Y, et al. Effect of various chemical oxidation reagents on soil indigenous microbial diversity in remediation of soil contaminated by PAHs[J]. Chemosphere, 2019, 226: 483-491. doi: 10.1016/j.chemosphere.2019.03.126
|
[14] |
LEMAIRE J, MORA V, FAURE P, et al. Chemical oxidation efficiency for aged, PAH-contaminated sites: An investigation of limiting factors[J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103061. doi: 10.1016/j.jece.2019.103061
|
[15] |
SCHROTH M H, OOSTROM M, WIETSMA T W, et al. In-situ oxidation of trichloroethene by permanganate: effects on porous medium hydraulic properties[J]. Journal of Contaminant Hydrology, 2001, 50(1): 79-98.
|
[16] |
CATHERINE S, PAULA T D S E S, CHRISTOPHE S, et al. Impact of chemical oxidation on soil quality[J]. Chemosphere, 2008, 72(2): 282-289. doi: 10.1016/j.chemosphere.2008.01.027
|
[17] |
SILVA P, SILVA V, NETO B D B, et al. Potassium permanganate oxidation of phenanthrene and pyrene in contaminated soils[J]. Journal of Hazardous Materials, 2010, 168(2-3): 1269-1273.
|
[18] |
LIAO X Y, ZHAO D, YAN X L. Determination of potassium permanganate demand variation with depth for oxidation-remediation of soils from a PAHs-contaminated coking plant[J]. Journal of Hazardous Materials, 2011, 193: 164-170. doi: 10.1016/j.jhazmat.2011.07.045
|
[19] |
XIONG B J, ZHANG Y C, HOU Y W, et al. Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar[J]. Chemosphere, 2017, 182: 316-324. doi: 10.1016/j.chemosphere.2017.05.020
|
[20] |
LEE C S, LI X D, SHI W Z, et al. Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics[J]. Science of the Total Environment, 2006, 356(1/2/3): 45-61.
|
[21] |
TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace-metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017
|
[22] |
GRYSCHKO R, KUHNLE R, TERYTZE K, et al. Soil extraction of readily soluble heavy metals and As with 1 M NH4NO3-solution-evaluation of DIN 19730 (6 pp)[J]. Journal of Soils and Sediments, 2005, 5(2): 101-106. doi: 10.1065/jss2004.10.119
|
[23] |
郭涓, 杨玉盛, 杨红玉, 等. 高锰酸钾氧化修复污染土壤中菲和芘的研究[J]. 农业环境科学学报, 2010, 29(3): 471-475.
|
[24] |
SUN H W, YAN Q S. Influence of pyrene combination state in soils on its treatment efficiency by Fenton oxidation[J]. Journal of Environmental Management, 2008, 88(3): 556-63. doi: 10.1016/j.jenvman.2007.03.031
|
[25] |
URYNOWICZ M A, BALU B, UDAYASANKAR U. Kinetics of natural oxidant demand by permanganate in aquifer solids[J]. Journal of contaminant hydrology, 2008, 96(1/2/3/4): 187-194.
|
[26] |
DANGI M B, URYNOWICZ M A, UDAYASANKAR U. Assessment of the experimental conditions affecting natural oxidant demand of soil by permanganate[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 5160-5166. doi: 10.1016/j.jece.2018.07.048
|
[27] |
SIEGRIST R L, URYNOWICZ M A, CRIMI M L, et al. Genesis and effects of particles produced during in situ chemical oxidation using permanganate[J]. Journal of Environmental Engineering, 2002, 128(11): 1068-1079. doi: 10.1061/(ASCE)0733-9372(2002)128:11(1068)
|
[28] |
朱端卫, 万小琼, 耿明建, 等. 酸化及施碳酸钙对土壤各形态锰的影响[J]. 植物营养与肥料学报, 2001, 7(3): 325-330. doi: 10.3321/j.issn:1008-505X.2001.03.013
|
[29] |
黄兴星, 朱先芳, 唐磊, 等. 密云水库上游某铁矿区土壤重金属含量及形态研究[J]. 中国环境科学, 2012, 32(9): 1632-1639. doi: 10.3969/j.issn.1000-6923.2012.09.014
|
[30] |
唐铭, 丁亮, 颜亮, 等. 高锰酸钾法降低自来水锰含量的技术运用[J]. 给水排水, 2003, 29(2): 30-32. doi: 10.3969/j.issn.1002-8471.2003.02.010
|
[31] |
岳聪, 汪群慧, 袁丽, 等. TCLP法评价铅锌尾矿库土壤重金属污染: 有效剂的选择及其与重金属形态的关系[J]. 北京大学学报(自然科学版), 2015, 51(1): 109-115.
|