[1] YIN H, GUO H F, QIU P W, et al. Case analysis on textile wastewater subjected to combined physicochemical–biological treatment and ozonation [J]. Desalination and Water Treatment, 2017, 66: 140-148. doi: 10.5004/dwt.2017.1619
[2] YASEEN D A, SCHOLZ M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review [J]. International Journal of Environmental Science and Technology, 2019, 16(2): 1193-1226. doi: 10.1007/s13762-018-2130-z
[3] TAN Y J, SUN L J, LI B T, et al. Fouling characteristics and fouling control of reverse osmosis membranes for desalination of dyeing wastewater with high chemical oxygen demand [J]. Desalination, 2017, 419: 1-7. doi: 10.1016/j.desal.2017.04.029
[4] HOLKAR C R, JADHAV A J, PINJARI D V, et al. A critical review on textile wastewater treatments: Possible approaches [J]. Journal of Environmental Management, 2016, 182: 351-366.
[5] DONKADOKULA N Y, KOLA A K, NAZ I, et al. A review on advanced physico-chemical and biological textile dye wastewater treatment techniques [J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(3): 543-560. doi: 10.1007/s11157-020-09543-z
[6] AL-KDASI A, IDRIS A, SAED K, et al. Treatment of textile wastewater by advanced oxidation processes- A review [J]. Global Nest Journal, 2004, 6(1): 222-230.
[7] GUNAWAN F M, MANGINDAAN D, KHOIRUDDIN K, et al. Nanofiltration membrane cross-linked by m-phenylenediamine for dye removal from textile wastewater [J]. Polymers for Advanced Technologies, 2019, 30(2): 360-367. doi: 10.1002/pat.4473
[8] 朱利杰, 范云双, 谢康, 等. 印染废水RO浓水水质分析 [J]. 中国环境科学, 2019, 39(11): 4646-4652. doi: 10.3969/j.issn.1000-6923.2019.11.020 ZHU L J, FAN Y S, XIE K, et al. Analysis of reverse osmosis concentrates from printing and dyeing wastewater treatment [J]. China Environmental Science, 2019, 39(11): 4646-4652(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.11.020
[9] ZHENG L, WANG X J, WANG X Z. Reuse of reverse osmosis concentrate in textile and dyeing industry by combined process of persulfate oxidation and lime-soda softening [J]. Journal of Cleaner Production, 2015, 108: 525-533. doi: 10.1016/j.jclepro.2015.09.027
[10] 朱薛妍, 郑银萍, 俞三传, 等. 浸没式纳滤印染废水深度处理研究 [J]. 水处理技术, 2013, 39(4): 93-96. doi: 10.3969/j.issn.1000-3770.2013.04.023 ZHU X Y, ZHENG Y P, YU S C, et al. Treatment of dyeing and printing wastewater through submerged nanofiltration [J]. Technology of Water Treatment, 2013, 39(4): 93-96(in Chinese). doi: 10.3969/j.issn.1000-3770.2013.04.023
[11] 谭玉珺, 张泽田, 吴乾元, 等. 印染废水反渗透脱盐系统运行性能及膜污堵特性 [J]. 环境科学, 2018, 39(5): 2249-2255. doi: 10.13227/j.hjkx.201707020 TAN Y J, ZHANG Z T, WU Q Y, et al. Operating characteristics and fouling characteristics of a RO membrane system for desalination of dyeing wastewater [J]. Environmental Science, 2018, 39(5): 2249-2255(in Chinese). doi: 10.13227/j.hjkx.201707020
[12] JIANG S X, LI Y N, LADEWIG B P. A review of reverse osmosis membrane fouling and control strategies [J]. Science of the Total Environment, 2017, 595: 567-583. doi: 10.1016/j.scitotenv.2017.03.235
[13] LIN W C, ZHANG Y T, LI D Y, et al. Roles and performance enhancement of feed spacer in spiral wound membrane modules for water treatment: A 20-year review on research evolvement [J]. Water Research, 2021, 198: 117146. doi: 10.1016/j.watres.2021.117146
[14] 国家环境保护总局. 水和废水监测分析方法(第四版)[M]. 北京: 中国环境科学出版社, 2002. State Environmental Protection Administration. Water and Wastewater Monitoring and Analysis Methods-4th Edition [M]. Beijing: China Environment Science Press, 2002(in Chinese).
[15] LOWRY O, ROSEBROUGH N, FARR A L, et al. Protein measurement with the folin phenol reagent [J]. Journal of Biological Chemistry, 1951, 193(1): 265-275. doi: 10.1016/S0021-9258(19)52451-6
[16] VAKONDIOS N, KOUKOURAKI E E, DIAMADOPOULOS E. Effluent organic matter (EfOM) characterization by simultaneous measurement of proteins and humic matter [J]. Water Research, 2014, 63: 62-70. doi: 10.1016/j.watres.2014.06.011
[17] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances [J]. Analytical Chemistry, 1956, 28(3): 350-356. doi: 10.1021/ac60111a017
[18] ATES N, KITIS M, YETIS U. Formation of chlorination by-products in waters with low SUVA—correlations with SUVA and differential UV spectroscopy [J]. Water Research, 2007, 41(18): 4139-4148. doi: 10.1016/j.watres.2007.05.042
[19] LAWAETZ A J, STEDMON C A. Fluorescence intensity calibration using the Raman scatter peak of water [J]. Applied Spectroscopy, 2009, 63(8): 936-940. doi: 10.1366/000370209788964548
[20] 陈诗雨, 李燕, 李爱民. 溶解性有机物研究中三维荧光光谱分析的应用 [J]. 环境科学与技术, 2015, 38(5): 64-68,73. CHEN S Y, LI Y, LI A M. Application of three-dimensional fluorescence spectroscopy in the study of dissolved organic matter [J]. Environmental Science & Technology, 2015, 38(5): 64-68,73(in Chinese).
[21] MENDOZA W G, WEISS E L, SCHIEBER B, et al. Controls on the distribution of fluorescent dissolved organic matter during an under-ice algal bloom in the western Arctic Ocean [J]. Global Biogeochemical Cycles, 2017, 31(7): 1118-1140. doi: 10.1002/2016GB005569
[22] COBLE P G. Marine optical biogeochemistry: The chemistry of ocean color [J]. Chemical Reviews, 2007, 107(2): 402-418. doi: 10.1021/cr050350+
[23] 章君. 膜技术在印染废水深度处理中的工程应用及效益分析[D]. 杭州: 浙江工商大学, 2015. ZHANG J. The engineering application with membrane technology in advanced treatment of printing and dyeing wastewater & its benefit analysis[D]. Hangzhou: Zhejiang Gongshang University, 2015(in Chinese).
[24] PANDEY A, SINGH P, IYENGAR L. Bacterial decolorization and degradation of azo dyes [J]. International Biodeterioration & Biodegradation, 2007, 59(2): 73-84.
[25] SARATALE R G, SARATALE G D, CHANG J S, et al. Bacterial decolorization and degradation of azo dyes: A review [J]. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(1): 138-157. doi: 10.1016/j.jtice.2010.06.006
[26] 张庆华, 陈国涛, 冯琳琳, 等. 混合菌群对偶氮染料的脱色降解研究进展 [J]. 应用与环境生物学报, 2020, 26(2): 469-478. doi: 10.19675/j.cnki.1006-687x.2019.06009 ZHANG Q H, CHEN G T, FENG L L, et al. Research progress on microbial decolorization and degradation of azo dyes [J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(2): 469-478(in Chinese). doi: 10.19675/j.cnki.1006-687x.2019.06009
[27] CHEN S Q, LI M, MA X Y, et al. Influence of inorganic ions on degradation capability of Fe-based metallic glass towards dyeing wastewater remediation [J]. Chemosphere, 2021, 264: 128392. doi: 10.1016/j.chemosphere.2020.128392
[28] PANDEY S R, JEGATHEESAN V, BASKARAN K, et al. Fouling in reverse osmosis (RO) membrane in water recovery from secondary effluent: A review [J]. Reviews in Environmental Science and Bio/Technology, 2012, 11(2): 125-145. doi: 10.1007/s11157-012-9272-0
[29] OZBEY-UNAL B, OMWENE P I, YAGCIOGLU M, et al. Treatment of organized industrial zone wastewater by microfiltration/reverse osmosis membrane process for water recovery: From lab to pilot scale [J]. Journal of Water Process Engineering, 2020, 38: 101646. doi: 10.1016/j.jwpe.2020.101646
[30] RAHARDIANTO A, GAO J B, GABELICH C J, et al. High recovery membrane desalting of low-salinity brackish water: Integration of accelerated precipitation softening with membrane RO [J]. Journal of Membrane Science, 2007, 289(1/2): 123-137.
[31] LI Y F, LI M C, XIAO K, et al. Reverse osmosis membrane autopsy in coal chemical wastewater treatment: Evidences of spatially heterogeneous fouling and organic-inorganic synergistic effect [J]. Journal of Cleaner Production, 2020, 246: 118964. doi: 10.1016/j.jclepro.2019.118964
[32] OSBURN C L, OVIEDO-VARGAS D, BARNETT E, et al. Regional groundwater and storms are hydrologic controls on the quality and export of dissolved organic matter in two tropical rainforest streams, Costa rica [J]. Journal of Geophysical Research:Biogeosciences, 2018, 123(3): 850-866. doi: 10.1002/2017JG003960
[33] CHEN M L, JUNG J, LEE Y K, et al. Surface accumulation of low molecular weight dissolved organic matter in surface waters and horizontal off-shelf spreading of nutrients and humic-like fluorescence in the Chukchi Sea of the Arctic Ocean [J]. Science of the Total Environment, 2018, 639: 624-632. doi: 10.1016/j.scitotenv.2018.05.205
[34] WÜNSCH U J, MURPHY K R, STEDMON C A. The one-sample PARAFAC approach reveals molecular size distributions of fluorescent components in dissolved organic matter [J]. Environmental Science & Technology, 2017, 51(20): 11900-11908.
[35] 蔡华玲, 宁寻安, 陈晓晖, 等. 印染外排废水中溶解性有机质的荧光特性 [J]. 环境化学, 2021, 40(5): 1592-1601. doi: 10.7524/j.issn.0254-6108.2020010402 CAI H L, NING X N, CHEN X H, et al. Fluorescence characteristics of dissolved organic matter in textile-dyeing effluents [J]. Environmental Chemistry, 2021, 40(5): 1592-1601(in Chinese). doi: 10.7524/j.issn.0254-6108.2020010402
[36] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter [J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
[37] 薛菲菲. 珠江三角洲典型印染废水处理设施出水中残余有机物及其生物毒性研究[D]. 广州: 广东工业大学, 2019 XUE F F. Residual micro organic pollutants and their biotoxicity of the effluent from the textile wastewater treatment plants at Pearl River Delta[D]. Guangzhou: Guangdong University of Technology. 2019(in Chinese).
[38] 郑璐, 许光明, 陈俊, 等. 污水厂深度处理过程中有机物三维荧光光谱的平行因子分析研究 [J]. 环境科学与管理, 2015, 40(10): 89-91,96. doi: 10.3969/j.issn.1673-1212.2015.10.021 ZHENG L, XU G M, CHEN J, et al. Organic matter removal based on 3D fluorescence spectroscopy and parafac analysis during wastewater advanced treatment process [J]. Environmental Science and Management, 2015, 40(10): 89-91,96(in Chinese). doi: 10.3969/j.issn.1673-1212.2015.10.021
[39] 王士峰. 印染废水三维荧光特征的研究[D]. 绵阳: 西南科技大学, 2015. WANG S F. Study on the three-dimensional fluorescence characteristics of the printing and dyeing wastewater[D]. Mianyang: Southwest University of Science and Technology, 2015(in Chinese).
[40] 黄振荣, 程澄, 汤久凯, 等. 印染废水处理厂排水中有机物的荧光方法表征 [J]. 光谱学与光谱分析, 2017, 37(10): 3118-3121. HUANG Z R, CHENG C, TANG J K, et al. Characterization of organic matters in the effluent of dyeing and printing wastewater treatment plants with fluorescence method [J]. Spectroscopy and Spectral Analysis, 2017, 37(10): 3118-3121(in Chinese).
[41] CHENG C, WU J, YOU L D, et al. Novel insights into variation of dissolved organic matter during textile wastewater treatment by fluorescence excitation emission matrix [J]. Chemical Engineering Journal, 2018, 335: 13-21. doi: 10.1016/j.cej.2017.10.059
[42] ALTENBACH B, GIGER W. Determination of benzene- and naphthalenesulfonates in wastewater by solid-phase extraction with graphitized carbon black and ion-pair liquid chromatography with UV detection [J]. Analytical Chemistry, 1995, 67(14): 2325-2333. doi: 10.1021/ac00110a002
[43] ZHENG L B, YU D W, WANG G, et al. Characteristics and formation mechanism of membrane fouling in a full-scale RO wastewater reclamation process: Membrane autopsy and fouling characterization [J]. Journal of Membrane Science, 2018, 563: 843-856. doi: 10.1016/j.memsci.2018.06.043
[44] 孙伟, 胡泓, 赵茜, 等. 达里诺尔湖水体DOM荧光特征及其来源解析 [J]. 环境科学研究, 2020, 33(9): 2084-2093. doi: 10.13198/j.issn.1001-6929.2020.03.26 SUN W, HU H, ZHAO Q, et al. Fluorescence characteristics and source analysis of dissolved organic matter in Dali-nor Lake [J]. Research of Environmental Sciences, 2020, 33(9): 2084-2093(in Chinese). doi: 10.13198/j.issn.1001-6929.2020.03.26
[45] MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity [J]. Limnology and Oceanography, 2001, 46(1): 38-48. doi: 10.4319/lo.2001.46.1.0038
[46] HUGUET A, BALMANN H R D, PARLANTI E. Fluorescence spectroscopy applied to the optimisation of a desalting step by electrodialysis for the characterisation of marine organic matter [J]. Journal of Membrane Science, 2009, 326(1): 186-196. doi: 10.1016/j.memsci.2008.09.051
[47] HUGUET A, VACHER L, RELEXANS S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary [J]. Organic Geochemistry, 2009, 40(6): 706-719. doi: 10.1016/j.orggeochem.2009.03.002
[48] ZHANG Y L, LIU M L, QIN B Q, et al. Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation [J]. Hydrobiologia, 2009, 627(1): 159-168. doi: 10.1007/s10750-009-9722-z
[49] CORY R M, MILLER M P, MCKNIGHT D M, et al. Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra [J]. Limnology and Oceanography:Methods, 2010, 8(2): 67-78. doi: 10.4319/lom.2010.8.67
[50] JIANG T, SKYLLBERG U, BJÖRN E, et al. Characteristics of dissolved organic matter (DOM) and relationship with dissolved mercury in Xiaoqing River-Laizhou Bay Estuary, Bohai Sea, China [J]. Environmental Pollution, 2017, 223: 19-30. doi: 10.1016/j.envpol.2016.12.006