[1] 施正伦, 骆仲泱, 周劲松, 等. 石煤流化床燃烧重金属排放特性试验研究 [J]. 煤炭学报, 2001, 26(2): 209-212. doi: 10.3321/j.issn:0253-9993.2001.02.024 SHI Z L, LUO Z Y, ZHOU J S, et al. Experimental research on heavy metals emission from fluidized bed with stone coal fired [J]. Journal of China Coal Society, 2001, 26(2): 209-212(in Chinese). doi: 10.3321/j.issn:0253-9993.2001.02.024
[2] 刘海彪, 孔少飞, 王伟, 等. 中国民用煤燃烧排放细颗粒物中重金属的清单 [J]. 环境科学, 2016, 37(8): 2823-2835. doi: 10.13227/j.hjkx.2016.08.002 LIU H B, KONG S F, WANG W, et al. Emission inventory of heavy metals in fine particles emitted from residential coal burning in China [J]. Environmental Science, 2016, 37(8): 2823-2835(in Chinese). doi: 10.13227/j.hjkx.2016.08.002
[3] JI P, SONG G C, XU W T, et al. Transformation characteristics of arsenic and lead during coal combustion [J]. Energy & Fuels, 2019, 33(9): 9280-9288.
[4] LUO G Q, YU Q, MA J J, et al. Pilot-scale study of volatilization behavior of Hg, Se, As, Cl, S during decoupled conversion of coal [J]. Fuel, 2013, 112: 704-709. doi: 10.1016/j.fuel.2013.05.029
[5] WANG J W, ZHANG Y S, LIU Z, et al. Effect of coordinated air pollution control devices in coal-fired power plants on arsenic emissions [J]. Energy & Fuels, 2017, 31(7): 7309-7316.
[6] HE K Q, SHI M D, LI Y, et al. Speciation analysis of arsenic in coal and its combustion by-products in coal-fired power plants [J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1310-1317. doi: 10.1016/S1872-5813(20)30087-6
[7] YANG Y H, HU H Y, XIE K, et al. Insight of arsenic transformation behavior during high-arsenic coal combustion [J]. Proceedings of the Combustion Institute, 2019, 37(4): 4443-4450. doi: 10.1016/j.proci.2018.07.064
[8] KANG Y, LIU G J, CHOU C L, et al. Arsenic in Chinese coals: Distribution, modes of occurrence, and environmental effects [J]. Science of the Total Environment, 2011, 412/413: 1-13. doi: 10.1016/j.scitotenv.2011.10.026
[9] GUO X, ZHENG C G, XU M H. Characterization of arsenic emissions from a coal-fired power plant [J]. Energy & Fuels, 2004, 18(6): 1822-1826.
[10] 金毅, 苑春刚, 江万平, 等. 粉煤灰中砷溶出特性及其与铁锰相关性分析 [J]. 环境化学, 2013, 32(2): 267-274. doi: 10.7524/j.issn.0254-6108.2013.02.013 JIN Y, YUAN C G, JIANG W P, et al. Arsenic leaching characteristics and correlations with iron, manganese in fly ash from coal-fired power plants [J]. Environmental Chemistry, 2013, 32(2): 267-274(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.02.013
[11] 何剑汶, 李文旭, 谌书, 等. 湖南桃江锰矿对溶液中As(Ⅴ)和As(Ⅲ)的去除及迁移行为对比 [J]. 环境化学, 2019, 38(8): 1801-1810. doi: 10.7524/j.issn.0254-6108.2018102304 HE J W, LI W X, CHEN S, et al. Comparison of removal and migration behavior of As(Ⅴ) and As(Ⅲ) in solution on Taojiang manganese ore, Hunan Province [J]. Environmental Chemistry, 2019, 38(8): 1801-1810(in Chinese). doi: 10.7524/j.issn.0254-6108.2018102304
[12] XIE J J, YUAN C G, XIE J, et al. Fraction distribution of arsenic in different-sized atmospheric particulate matters [J]. Environmental Science and Pollution Research, 2019, 26(30): 30826-30835. doi: 10.1007/s11356-019-06176-w
[13] FINKELMAN R B, OREM W, CASTRANOVA V, et al. Health impacts of coal and coal use: Possible solutions [J]. International Journal of Coal Geology, 2002, 50(1/2/3/4): 425-443.
[14] BAILEY K A, WU M C, WARD W O, et al. Arsenic and the epigenome: Interindividual differences in arsenic metabolism related to distinct patterns of DNA methylation [J]. Journal of Biochemical and Molecular Toxicology, 2013, 27(2): 106-115. doi: 10.1002/jbt.21462
[15] ZHAO Y C, ZHANG J Y, HUANG W C, et al. Arsenic emission during combustion of high arsenic coals from southwestern Guizhou, China [J]. Energy Conversion and Management, 2008, 49(4): 615-624. doi: 10.1016/j.enconman.2007.07.044
[16] 陈保卫, CHRIS L X. 中国关于砷的研究进展 [J]. 环境化学, 2011, 30(11): 1936-1943. CHEN B W, CHRIS L. Recent progress in arsenic research in China [J]. Environmental Chemistry, 2011, 30(11): 1936-1943(in Chinese).
[17] 刘新蕾, 欧阳婉约, 张彤. 大气颗粒物重金属组分的化学形态及健康效应 [J]. 环境化学, 2021, 40(4): 974-989. doi: 10.7524/j.issn.0254-6108.2019111801 LIU X L, OUYANG W Y, ZHANG T. Chemical speciation and health effect of heavy metals in atmospheric particulate matter [J]. Environmental Chemistry, 2021, 40(4): 974-989(in Chinese). doi: 10.7524/j.issn.0254-6108.2019111801
[18] WANG Y, YU J L, WANG Z H, et al. A review on arsenic removal from coal combustion: Advances, challenges and opportunities [J]. Chemical Engineering Journal, 2021, 414: 128785. doi: 10.1016/j.cej.2021.128785
[19] WANG C B, LIU H M, ZHANG Y, et al. Review of arsenic behavior during coal combustion: Volatilization, transformation, emission and removal technologies [J]. Progress in Energy and Combustion Science, 2018, 68: 1-28. doi: 10.1016/j.pecs.2018.04.001
[20] 郭欣, 郑楚光, 刘迎晖, 等. 煤中汞, 砷, 硒赋存形态的研究 [J]. 工程热物理学报, 2001, 22(6): 763-766. doi: 10.3321/j.issn:0253-231X.2001.06.030 GUO X, ZHENG C G, LIU Y H, et al. The study on the mode of occurrence of mercury, arsenic and selenium in coal [J]. Journal of Engineering Thermophysics, 2001, 22(6): 763-766(in Chinese). doi: 10.3321/j.issn:0253-231X.2001.06.030
[21] GONG H Y, HUANG Y D, HU H Y, et al. Insight of particulate arsenic removal from coal-fired power plants [J]. Fuel, 2019, 257: 116018. doi: 10.1016/j.fuel.2019.116018
[22] TIAN C, GUPTA R, ZHAO Y C, et al. Release behaviors of arsenic in fine particles generated from a typical high-arsenic coal at a high temperature [J]. Energy & Fuels, 2016, 30(8): 6201-6209.
[23] KIZILSHTEIN L Y, KHOLODKOV Y I. Ecologically hazardous elements in coals of the Donets Basin [J]. International Journal of Coal Geology, 1999, 40(2/3): 189-197.
[24] MASTALERZ M, DROBNIAK A. Arsenic, cadmium, lead, and zinc in the Danville and Springfield coal members (Pennsylvanian) from Indiana [J]. International Journal of Coal Geology, 2007, 71(1): 37-53. doi: 10.1016/j.coal.2006.05.005
[25] DING Z H, ZHENG B S, LONG J P, et al. Geological and geochemical characteristics of high arsenic coals from endemic arsenosis areas in southwestern Guizhou Province, China [J]. Applied Geochemistry, 2001, 16(11/12): 1353-1360.
[26] MUKHERJEE S, SRIVASTAVA S K. Trace elements in high-sulfur Assam coals from the makum coalfield in the northeastern region of India [J]. Energy & Fuels, 2005, 19(3): 882-891.
[27] 中国电力行业年度发展报告2020 [R]. 北京: 中国电力企业联合会, 2020. China electric power industry annual development report 2020 [R]. Beijing: China Electricity Council, 2020.
[28] GEORGE A, SHEN B X, KANG D R, et al. Emission control strategies of hazardous trace elements from coal-fired power plants in China [J]. Journal of Environmental Sciences, 2020, 93: 66-90. doi: 10.1016/j.jes.2020.02.025
[29] 2020煤炭行业发展年度报告 [R]. 北京: 中国煤炭工业协会, 2021. 2020 Annual report on the development of the coal industry [R]. Beijing: China Coal Industry Association, 2021.
[30] SWAINE D J, GOODARZI F. Environmental aspects of trace elements in coal [M]. Dordrecht Kluwer, 1995.
[31] YUDOVICH Y E, KETRIS M P. Arsenic in coal: a review [J]. International Journal of Coal Geology, 2005, 61(3/4): 141-196.
[32] KETRIS M P, YUDOVICH Y E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals [J]. International Journal of Coal Geology, 2009, 78(2): 135-148. doi: 10.1016/j.coal.2009.01.002
[33] TIAN H Z, LU L, HAO J M, et al. A review of key hazardous trace elements in Chinese coals: Abundance, occurrence, behavior during coal combustion and their environmental impacts [J]. Energy & Fuels, 2013, 27(2): 601-614.
[34] 刘忠, 白宝泉, 王硕. 燃煤烟气中As、Se、Pb的形态分布及S、Cl元素对其形态分布的影响 [J]. 燃料化学学报, 2020, 48(11): 1298-1309. doi: 10.3969/j.issn.0253-2409.2020.11.003 LIU Z, BAI B Q, WANG S. Species distribution of As, Se and Pb in coal-fired flue gas and influence of elements S and Cl on them [J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1298-1309(in Chinese). doi: 10.3969/j.issn.0253-2409.2020.11.003
[35] 刘慧敏, 王春波, 张月, 等. 温度和赋存形态对燃煤过程中砷迁移和释放的影响 [J]. 化工学报, 2015, 66(11): 4643-4651. LIU H M, WANG C B, ZHANG Y, et al. Effect of temperature and occurrence form of arsenic on its migration and volatilization during coal combustion [J]. CIESC Journal, 2015, 66(11): 4643-4651(in Chinese).
[36] MARCZAK M, WIEROŃSKA F, BURMISTRZ P, et al. Investigation of subbituminous coal and lignite combustion processes in terms of mercury and arsenic removal [J]. Fuel, 2019, 251: 572-579. doi: 10.1016/j.fuel.2019.04.082
[37] ZHENG C H, WANG L, ZHANG Y X, et al. Co-benefit of hazardous trace elements capture in dust removal devices of ultra-low emission coal-fired power plants [J]. Journal of Zhejiang University-SCIENCE A, 2018, 19(1): 68-79. doi: 10.1631/jzus.A1700229
[38] TIAN H Z, LIU K Y, ZHOU J R, et al. Atmospheric emission inventory of hazardous trace elements from China's coal-fired power plants: Temporal trends and spatial variation characteristics [J]. Environmental Science & Technology, 2014, 48(6): 3575-3582.
[39] 王明仕, 杨娜娜, 朱建明, 等. 中国燃煤砷排放量估算 [J]. 煤炭转化, 2008, 31(2): 1-3,7. doi: 10.3969/j.issn.1004-4248.2008.02.001 WANG M S, YANG N N, ZHU J M, et al. Estimation of arsenic emission from coal combustion in China [J]. Coal Conversion, 2008, 31(2): 1-3,7(in Chinese). doi: 10.3969/j.issn.1004-4248.2008.02.001
[40] CHEN J, LIU G J, KANG Y, et al. Atmospheric emissions of F, As, Se, Hg, and Sb from coal-fired power and heat generation in China [J]. Chemosphere, 2013, 90(6): 1925-1932. doi: 10.1016/j.chemosphere.2012.10.032
[41] DUAN J C, TAN J H, HAO J M, et al. Size distribution, characteristics and sources of heavy metals in haze episod in Beijing [J]. Journal of Environmental Sciences, 2014, 26(1): 189-196. doi: 10.1016/S1001-0742(13)60397-6
[42] LI J H, PENG Y, CHANG H Z, et al. Chemical poison and regeneration of SCR catalysts for NOx removal from stationary sources [J]. Frontiers of Environmental Science & Engineering, 2016, 10(3): 413-427.
[43] PENG Y, SI W Z, LI X, et al. Comparison of MoO3 and WO3 on arsenic poisoning V2O5/TiO2 catalyst: DRIFTS and DFT study [J]. Applied Catalysis B:Environmental, 2016, 181: 692-698. doi: 10.1016/j.apcatb.2015.08.030
[44] 陈清如, 杨玉芬. 21世纪高效干法选煤技术的发展 [J]. 中国矿业大学学报, 2001, 30(6): 527-530. doi: 10.3321/j.issn:1000-1964.2001.06.001 CHEN Q R, YANG Y F. Development of high effective dry coal beneficiation technology in 21st century [J]. Journal of China University of Mining & Technology, 2001, 30(6): 527-530(in Chinese). doi: 10.3321/j.issn:1000-1964.2001.06.001
[45] 李洪跃. 选煤在洁净煤技术中的作用分析 [J]. 煤炭与化工, 2015, 38(7): 127-128. LI H Y. Coal preparation application in cleaning coal technology [J]. Coal and Chemical Industry, 2015, 38(7): 127-128(in Chinese).
[46] WANG M S, SONG D Y, ZHENG B S, et al. The studying of washing of arsenic and sulfur from coals having different ranges of arsenic contents [J]. Annals of the New York Academy of Sciences, 2008, 1140: 321-324. doi: 10.1196/annals.1454.018
[47] SONG G C, XU W T, JI P, et al. Study on the transformation of arsenic and lead in pyrite during thermal conversion [J]. Energy & Fuels, 2019, 33(9): 8463-8470.
[48] ZHOU C C, LIU G J, WU D, et al. Mobility behavior and environmental implications of trace elements associated with coal gangue: a case study at the Huainan Coalfield in China [J]. Chemosphere, 2014, 95: 193-199. doi: 10.1016/j.chemosphere.2013.08.065
[49] CAO Y Z, NIU X R, GUO S Q, et al. Release behavior of arsenic during pyrolysis of two Chinese coal gangues [J]. Journal of the Brazilian Chemical Society, 2019, 30(9): 1801-1806.
[50] LONG J, ZHANG S X, LUO K L. Selenium in Chinese coal gangue: Distribution, availability, and recommendations [J]. Resources, Conservation and Recycling, 2019, 149: 140-150. doi: 10.1016/j.resconrec.2019.05.039
[51] 段磊, 孙亚乔, 王晓冬, 等. 不同风化程度煤矸石中重金属释放及潜在生态风险 [J]. 安全与环境学报, 2021, 21(2): 874-881. doi: 10.13637/j.issn.1009-6094.2020.0306 DUAN L, SUN Y Q, WANG X D, et al. Potential ecological risks of heavy metals in the coal gangue and their release in different weathering degrees [J]. Journal of Safety and Environment, 2021, 21(2): 874-881(in Chinese). doi: 10.13637/j.issn.1009-6094.2020.0306
[52] 王文峰, 秦勇, 宋党育. 煤中有害元素的洗选洁净潜势 [J]. 燃料化学学报, 2003, 31(4): 295-299. doi: 10.3969/j.issn.0253-2409.2003.04.002 WANG W F, QIN Y, SONG D Y. Cleaning potential of hazardous elements during coal washing [J]. Journal of Fuel Chemistry and Technology, 2003, 31(4): 295-299(in Chinese). doi: 10.3969/j.issn.0253-2409.2003.04.002
[53] TANG Y G, YANG C W, FINKELMAN R B, et al. Behavior of minerals and trace elements during cleaning of three coals with moderately high ash yields [J]. Energy & Fuels, 2020, 34(2): 2501-2515.
[54] 郭纪伟, 苗瑞灿, 杨历, 等. 燃煤电厂砷排放控制技术研究进展 [J]. 化工环保, 2019, 39(4): 381-386. doi: 10.3969/j.issn.1006-1878.2019.04.003 GUO J W, MIAO R C, YANG L, et al. Research progress of arsenic emission control technology in coal-fired power plant [J]. Environmental Protection of Chemical Industry, 2019, 39(4): 381-386(in Chinese). doi: 10.3969/j.issn.1006-1878.2019.04.003
[55] 王明仕, 郑宝山, R B Finkelman, 等. 煤中砷赋存状态与其脱洗率的关系 [J]. 燃料化学学报, 2005, 33(2): 253-256. doi: 10.3969/j.issn.0253-2409.2005.02.024 WANG M S, ZHENG B S, FINKELMAN R, et al. Relationship between occurrence mode of arsenic in coal and its washing rate [J]. Journal of Fuel Chemistry and Technology, 2005, 33(2): 253-256(in Chinese). doi: 10.3969/j.issn.0253-2409.2005.02.024
[56] 王德永. 煤中砷含量分布特征与分级研究 [J]. 煤质技术, 2000(6): 27-30. WANG D Y. Study on the distribution characteristics and classification of arsenic content in coal [J]. Coal Quality Technology, 2000(6): 27-30(in Chinese).
[57] 秦勇, 王文峰, 宋党育. 太西煤中有害元素在洗选过程中的迁移行为与机理 [J]. 燃料化学学报, 2002, 30(2): 147-150. doi: 10.3969/j.issn.0253-2409.2002.02.010 QIN Y, WANG W F, SONG D Y. Migrating behavior and mechanism of deleterious elements in Taixi coals during cleaning process [J]. Journal of Fuel Chemistry and Technology, 2002, 30(2): 147-150(in Chinese). doi: 10.3969/j.issn.0253-2409.2002.02.010
[58] 宋党育, 秦勇, 张军营, 等. 西部煤中有害痕量元素的洗选脱除特性 [J]. 中国矿业大学学报, 2006, 35(2): 255-259, 282. doi: 10.3321/j.issn:1000-1964.2006.02.024 SONG D Y, QIN Y, ZHANG J Y, et al. Washability characteristics of hazardous trace elements in coals from western region of China [J]. Journal of China University of Mining & Technology, 2006, 35(2): 255-259, 282(in Chinese). doi: 10.3321/j.issn:1000-1964.2006.02.024
[59] 王琳. 煤炭洗选脱除煤中有害微量元素的实验研究 [J]. 洁净煤技术, 2007, 13(3): 13-17. doi: 10.3969/j.issn.1006-6772.2007.03.003 WANG L. The study on removal of trace elements in coal by coal preparation [J]. Clean Coal Technology, 2007, 13(3): 13-17(in Chinese). doi: 10.3969/j.issn.1006-6772.2007.03.003
[60] TANG Y G, CHANG C X, ZHANG Y Z, et al. Migration and distribution of fifteen toxic trace elements during the coal washing of the Kailuan coalfield, Hebei Province, China [J]. Energy Exploration & Exploitation, 2009, 27(2): 143-152.
[61] 宋党育, 张晓逵, 张军营, 等. 煤中有害微量元素的洗选迁移特性 [J]. 煤炭学报, 2010, 35(7): 1170-1176. doi: 10.13225/j.cnki.jccs.2010.07.012 SONG D Y, ZHANG X K, ZHANG J Y, et al. Migration characteristics of hazardous trace elements in coal in the process of flotation [J]. Journal of China Coal Society, 2010, 35(7): 1170-1176(in Chinese). doi: 10.13225/j.cnki.jccs.2010.07.012
[62] 张燕青, 黄满红, 戚芳方, 等. 煤矸石中金属和酸根离子的淋溶特性 [J]. 环境化学, 2014, 33(3): 452-458. doi: 10.7524/j.issn.0254-6108.2014.03.008 ZHANG Y Q, HUANG M H, QI F F, et al. The leaching characteristics of metals and acid radical ions in gangue [J]. Environmental Chemistry, 2014, 33(3): 452-458(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.03.008
[63] LI S, GONG H Y, HU H Y, et al. Re-using of coal-fired fly ash for arsenic vapors in situ retention before SCR catalyst: Experiments and mechanisms [J]. Chemosphere, 2020, 254: 126700. doi: 10.1016/j.chemosphere.2020.126700
[64] WANG J W, ZHANG Y S, WANG T, et al. Effect of modified fly ash injection on As, Se, and Pb emissions in coal-fired power plant [J]. Chemical Engineering Journal, 2020, 380: 122561. doi: 10.1016/j.cej.2019.122561
[65] 郭胜利, 李东伟, 耿伟乐, 等. 调制碳酸钙对燃煤重金属As, Cd, Zn的排放控制 [J]. 煤炭学报, 2015, 40(12): 2967-2973. GUO S L, LI D W, GENG W L, et al. Controlling effect of the modified calcium carbonate on the capture of As, Cd and Zn during coal combustion [J]. Journal of China Coal Society, 2015, 40(12): 2967-2973(in Chinese).
[66] ZHAO B, CHEN G, QIN L B, et al. Effect of coal blending on arsenic and fine particles emission during coal combustion [J]. Journal of Cleaner Production, 2021, 311: 127645. doi: 10.1016/j.jclepro.2021.127645
[67] HAN J, LIANG Y S, ZHAO B, et al. In-situ reaction between arsenic/selenium and minerals in fly ash at high temperature during blended coal combustion [J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1356-1364. doi: 10.1016/S1872-5813(20)30089-X
[68] 刘慧敏, 王春波, 郭永成, 等. 高砷褐煤与低砷烟煤混燃砷的挥发特性及模型 [J]. 化工学报, 2016, 67(10): 4477-4484. LIU H M, WANG C B, GUO Y C, et al. Experimental and modeling study on arsenic volatilization during co-combustion of high arsenic lignite and low arsenic bituminous coal [J]. CIESC Journal, 2016, 67(10): 4477-4484(in Chinese).
[69] LIU H M, WANG C B, ZHANG Y, et al. Experimental and modeling study on the volatilization of arsenic during co-combustion of high arsenic lignite blends [J]. Applied Thermal Engineering, 2016, 108: 1336-1343. doi: 10.1016/j.applthermaleng.2016.07.187
[70] 刘彦, 周俊虎, 张永生, 等. 金属盐对O2/CO2煤粉混燃钙基脱硫反应的影响 [J]. 燃料化学学报, 2004, 32(5): 531-536. doi: 10.3969/j.issn.0253-2409.2004.05.005 LIU Y, ZHOU J H, ZHANG Y S, et al. The effect of metallic salt additives on calcium-based desulfurization in O2-CO2 pulverized coal combustion [J]. Journal of Fuel Chemistry and Technology, 2004, 32(5): 531-536(in Chinese). doi: 10.3969/j.issn.0253-2409.2004.05.005
[71] TANG Q, LIU G J, YAN Z C, et al. Distribution and fate of environmentally sensitive elements (arsenic, mercury, stibium and selenium) in coal-fired power plants at Huainan, Anhui, China [J]. Fuel, 2012, 95: 334-339. doi: 10.1016/j.fuel.2011.12.052
[72] TIAN H Z, WANG Y, XUE Z G, et al. Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China, 2007 [J]. Science of the Total Environment, 2011, 409(16): 3078-3081. doi: 10.1016/j.scitotenv.2011.04.039
[73] YANG J P, LI Q, ZHAO Y C, et al. Trace element emissions from coal-fired power plants[M]//Emission and Control of Trace Elements from Coal-Derived Gas Streams. Amsterdam: Elsevier, 2019: 227-285.
[74] MEIJ R, TE WINKEL H. The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations [J]. Atmospheric Environment, 2007, 41(40): 9262-9272. doi: 10.1016/j.atmosenv.2007.04.042
[75] ZHAO S L, DUAN Y F, CHEN L, et al. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury [J]. Environmental Pollution, 2017, 229: 863-870. doi: 10.1016/j.envpol.2017.07.043
[76] 赵永椿, 马斯鸣, 杨建平, 等. 燃煤电厂污染物超净排放的发展及现状 [J]. 煤炭学报, 2015, 40(11): 2629-2640. doi: 10.13225/j.cnki.jccs.2015.8001 ZHAO Y C, MA S M, YANG J P, et al. Status of ultra-low emission technology in coal-fired power plant [J]. Journal of China Coal Society, 2015, 40(11): 2629-2640(in Chinese). doi: 10.13225/j.cnki.jccs.2015.8001
[77] HAN D M, WU Q R, WANG S X, et al. Distribution and emissions of trace elements in coal-fired power plants after ultra-low emission retrofitting [J]. Science of the Total Environment, 2021, 754: 142285. doi: 10.1016/j.scitotenv.2020.142285
[78] 许豪, 张成, 袁昌乐, 等. 模拟烟气气氛下矿物元素组分对砷的吸附特性研究 [J]. 燃料化学学报, 2019, 47(7): 876-883. doi: 10.3969/j.issn.0253-2409.2019.07.013 XU H, ZHANG C, YUAN C L, et al. Study on arsenic adsorption characteristics by mineral elements in simulated flue gas atmosphere [J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 876-883(in Chinese). doi: 10.3969/j.issn.0253-2409.2019.07.013
[79] CHARPENTEAU C, SENEVIRATNE R, GEORGE A, et al. Screening of low cost sorbents for arsenic and mercury capture in gasification systems [J]. Energy & Fuels, 2007, 21(5): 2746-2750.
[80] LÓPEZ-ANTÓN M A, DÍAZ-SOMOANO M, FIERRO J L G, et al. Retention of arsenic and selenium compounds present in coal combustion and gasification flue gases using activated carbons [J]. Fuel Processing Technology, 2007, 88(8): 799-805. doi: 10.1016/j.fuproc.2007.03.005
[81] PLAYER R L, WOUTERLOOD H J. Removal and recovery of arsenous oxide from flue gases. A pilot study of the activated carbon process [J]. Environmental Science & Technology, 1982, 16(11): 808-814.
[82] YAP P L, NINE M J, HASSAN K, et al. Graphene-based sorbents for multipollutants removal in water: A review of recent progress [J]. Advanced Functional Materials, 2021, 31(9): 2007356. doi: 10.1002/adfm.202007356
[83] HAGHGOO S, NEKOEI A R. Metal oxide adsorption on fullerene C60 and its potential for adsorption of pollutant gases;density functional theory studies [J]. RSC Advances, 2021, 11(28): 17377-17390. doi: 10.1039/D1RA02251B
[84] SALEH T A, AGARWAL S, GUPTA V K. Synthesis of MWCNT/MnO2 and their application for simultaneous oxidation of arsenite and sorption of arsenate [J]. Applied Catalysis B:Environmental, 2011, 106(1/2): 46-53.
[85] WU D W, LIU J, YANG Y J, et al. The role of SO2 in arsenic removal by carbon-based sorbents: A DFT study [J]. Chemical Engineering Journal, 2021, 410: 128439. doi: 10.1016/j.cej.2021.128439
[86] 王泉海, 刘迎晖, 张军营, 等. CaO对烟气中砷的形态和分布的影响 [J]. 环境科学学报, 2003, 23(4): 549-551. doi: 10.3321/j.issn:0253-2468.2003.04.028 WANG Q H, LIU Y H, ZHANG J Y, et al. Effect of CaO on the speciation of arsenic in flue gases [J]. Acta Scientiae Circumstantiae, 2003, 23(4): 549-551(in Chinese). doi: 10.3321/j.issn:0253-2468.2003.04.028
[87] CAO Y, SONG B, SONG M, et al. Capture of arsenic in coal combustion flue gas at high temperature in the presence of CaSiO3 with good anti-sintering [J]. Fuel Processing Technology, 2020, 205: 106428. doi: 10.1016/j.fuproc.2020.106428
[88] CHEN D K, HU H Y, XU Z, et al. Findings of proper temperatures for arsenic capture by CaO in the simulated flue gas with and without SO2 [J]. Chemical Engineering Journal, 2015, 267: 201-206. doi: 10.1016/j.cej.2015.01.035
[89] STERLING R O, HELBLE J J. Reaction of arsenic vapor species with fly ash compounds: kinetics and speciation of the reaction with calcium silicates [J]. Chemosphere, 2003, 51(10): 1111-1119. doi: 10.1016/S0045-6535(02)00722-1
[90] SONG B, SONG M, CHEN D D, et al. Retention of arsenic in coal combustion flue gas at high temperature in the presence of CaO [J]. Fuel, 2020, 259: 116249. doi: 10.1016/j.fuel.2019.116249
[91] LI Y Z, TONG H L, ZHUO Y Q, et al. Simultaneous removal of SO2 and trace SeO2 from flue gas:   effect of product layer on mass transfer [J]. Environmental Science & Technology, 2006, 40(13): 4306-4311.
[92] ZHANG Y, WANG C B, LI W H, et al. Removal of gas-phase As2O3 by metal oxide adsorbents: Effects of experimental conditions and evaluation of adsorption mechanism [J]. Energy & Fuels, 2015, 29(10): 6578-6585.
[93] FU B, HOWER J C, LI S, et al. The key roles of Fe-bearing minerals on arsenic capture and speciation transformation during high-As bituminous coal combustion: Experimental and theoretical investigations [J]. Journal of Hazardous Materials, 2021, 415: 125610. doi: 10.1016/j.jhazmat.2021.125610
[94] ZHANG Y, WANG C B, LIU H M. Experiment and mechanism research on gas-phase As2O3 adsorption of Fe2O3/γ-Al2O3 [J]. Fuel, 2016, 181: 1034-1040. doi: 10.1016/j.fuel.2016.04.141
[95] ZHANG Y, LIU J. Density functional theory study of arsenic adsorption on the Fe2O3 (001) surface [J]. Energy & Fuels, 2019, 33(2): 1414-1421.
[96] ZHANG K H, ZHANG D X, ZHANG K, et al. Capture of gas-phase arsenic by ferrospheres separated from fly ashes [J]. Energy & Fuels, 2016, 30(10): 8746-8752.
[97] HU P B, WENG Q Y, LI D L, et al. Research on the removal of As2O3 by γ-Al2O3 adsorption based on density functional theory [J]. Chemosphere, 2020, 257: 127243. doi: 10.1016/j.chemosphere.2020.127243
[98] HU H Y, CHEN D K, LIU H, et al. Adsorption and reaction mechanism of arsenic vapors over γ-Al2O3 in the simulated flue gas containing acid gases [J]. Chemosphere, 2017, 180: 186-191. doi: 10.1016/j.chemosphere.2017.03.114
[99] HUANG Y D, YANG Y H, HU H Y, et al. A deep insight into arsenic adsorption over γ-Al2O3 in the presence of SO2/NO [J]. Proceedings of the Combustion Institute, 2019, 37(3): 2951-2957. doi: 10.1016/j.proci.2018.06.136
[100] XING J Y, WANG C B, ZHANG Y, et al. A deep insight into the role of O2 on As2O3 capture over γ-Al2O3 sorbent: Experimental and DFT study [J]. Chemical Engineering Journal, 2021, 410: 128311. doi: 10.1016/j.cej.2020.128311
[101] BALTRUS J P, GRANITE E J, PENNLINE H W, et al. Surface characterization of palladium-alumina sorbents for high-temperature capture of mercury and arsenic from fuel gas [J]. Fuel, 2010, 89(6): 1323-1325. doi: 10.1016/j.fuel.2009.09.030
[102] POULSTON S, GRANITE E J, PENNLINE H W, et al. Palladium based sorbents for high temperature arsine removal from fuel gas [J]. Fuel, 2011, 90(10): 3118-3121. doi: 10.1016/j.fuel.2011.05.012
[103] RUPP E C, GRANITE E J, STANKO D C. Laboratory scale studies of Pd/γ-Al2O3 sorbents for the removal of trace contaminants from coal-derived fuel gas at elevated temperatures [J]. Fuel, 2013, 108: 131-136. doi: 10.1016/j.fuel.2010.12.013
[104] HE K Q, YUAN C G, JIANG Y H, et al. Synergistic effects of Fe-Mn binary oxide for gaseous arsenic removal in flue gas [J]. Ecotoxicology and Environmental Safety, 2021, 207: 111491. doi: 10.1016/j.ecoenv.2020.111491
[105] HE K Q, YUAN C G, JIANG Y H, et al. Highly efficient sorption and immobilization of gaseous arsenic from flue gas on MnO2/attapulgite composite with low secondary leaching risks [J]. Journal of Cleaner Production, 2021, 292: 126003. doi: 10.1016/j.jclepro.2021.126003
[106] PAN H, HOU H J, CHEN J, et al. Adsorption of arsenic on iron modified attapulgite (Fe/ATP): Surface complexation model and DFT studies [J]. Adsorption, 2018, 24(5): 459-469. doi: 10.1007/s10450-018-9959-9
[107] WANG C B, ZHANG Y, LIU H M. Experimental and mechanism study of gas-phase arsenic adsorption over Fe2O3/γ-Al2O3 sorbent in oxy-fuel combustion flue gas [J]. Industrial & Engineering Chemistry Research, 2016, 55(40): 10656-10663.
[108] WANG T, ISHIDA T, GU R, et al. Experimental investigation of pozzolanic reaction and curing temperature-dependence of low-calcium fly ash in cement system and Ca-Si-Al element distribution of fly ash-blended cement paste [J]. Construction and Building Materials, 2021, 267: 121012. doi: 10.1016/j.conbuildmat.2020.121012
[109] 鲁敏, 熊祖鸿, 房科靖, 等. 粉煤灰基催化材料的研究进展 [J]. 环境化学, 2019, 38(2): 297-305. doi: 10.7524/j.issn.0254-6108.2018040907 LU M, XIONG Z H, FANG K J, et al. Coal fly ash based catalytic materials: A review [J]. Environmental Chemistry, 2019, 38(2): 297-305(in Chinese). doi: 10.7524/j.issn.0254-6108.2018040907
[110] 尚洪山, 杨帆, 寇元. 固态合成粉煤灰类脱硫吸附剂的制备及表征 [J]. 环境化学, 2003, 22(6): 529-533. doi: 10.3321/j.issn:0254-6108.2003.06.001 SHANG H S, YANG F, KOU Y. The preparation and characterization upon solid-state synthesis of a SO2 sorbent from fly ash [J]. Environmental Chemistry, 2003, 22(6): 529-533(in Chinese). doi: 10.3321/j.issn:0254-6108.2003.06.001
[111] 刘静超, 赵永椿, 何永来, 等. 330 MW燃煤机组异相凝并对重金属排放控制的实验研究 [J]. 燃料化学学报, 2020, 48(11): 1386-1393. doi: 10.3969/j.issn.0253-2409.2020.11.012 LIU J C, ZHAO Y C, HE Y L, et al. Experimental research on the control of heavy metal emissions from 330 MW coal-fired unit by heterogeneous agglomeration [J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1386-1393(in Chinese). doi: 10.3969/j.issn.0253-2409.2020.11.012
[112] 李扬, 何永来, 靳立军, 等. 燃煤电厂异相凝并飞灰重金属淋滤特性 [J]. 燃料化学学报, 2020, 48(11): 1394-1401. doi: 10.3969/j.issn.0253-2409.2020.11.013 LI Y, HE Y L, JIN L J, et al. Leaching characteristics of trace elements in hetero-aggregation fly ash from coal-fired power plant [J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1394-1401(in Chinese). doi: 10.3969/j.issn.0253-2409.2020.11.013
[113] 赵毅, 仇稳, 马宵影, 等. CH3COOOH/H2O2液相氧化脱除烟气中砷的实验研究 [J]. 河南师范大学学报(自然科学版), 2017, 45(6): 37-41,2. ZHAO Y, QIU W, MA X Y, et al. Experimental study on the removal of arsenic from flue gas by CH3COOOH/H2O2 oxidation method [J]. Journal of Henan Normal University (Natural Science Edition), 2017, 45(6): 37-41,2(in Chinese).
[114] 赵毅, 仇稳, 王佳男, 等. 烟气中As2O3的氧化脱除试验 [J]. 河南科技大学学报(自然科学版), 2017, 38(4): 94-97,121. ZHAO Y, QIU W, WANG J N, et al. Oxidation removal experiment of As2O3 in flue gas [J]. Journal of Henan University of Science and Technology (Natural Science), 2017, 38(4): 94-97,121(in Chinese).
[115] 赵毅, 仇稳, 杨丽娟, 等. 高锰酸钾溶液脱除烟气中砷的实验研究 [J]. 河南理工大学学报(自然科学版), 2017, 36(6): 81-86. doi: 10.16186/j.cnki.1673-9787.2017.06.013 ZHAO Y, QIU W, YANG L J, et al. Experimental study on the arsenic removal of flue gas by KMnO4 solution [J]. Journal of Henan Polytechnic University (Natural Science), 2017, 36(6): 81-86(in Chinese). doi: 10.16186/j.cnki.1673-9787.2017.06.013
[116] ZHAO Y, QIU W, YANG C Y, et al. Removal of arsenic from flue gas by using NaClO solution [J]. Chemical Engineering Journal, 2017, 309: 1-6. doi: 10.1016/j.cej.2016.10.007
[117] ZHAO Y, QIU W. Arsenic oxidation and removal from flue gas using H2O2/Na2S2O8 solution [J]. Fuel Processing Technology, 2017, 167: 355-362. doi: 10.1016/j.fuproc.2017.07.021
[118] ZHAO Y, QIU W, SUN Z H. Removal of arsenic from flue gas using NaClO/NaClO2 complex absorbent [J]. Chemical Engineering Research and Design, 2019, 144: 505-511. doi: 10.1016/j.cherd.2019.02.037