[1] PALACIOS M, F -PAMPILLÓN J, RODRı́GUEZ M E. Organohalogenated compounds levels in chlorinated drinking waters and current compliance with quality standards throughout the European Union [J]. Water Research, 2000, 34(3): 1002-1016. doi: 10.1016/S0043-1354(99)00191-8
[2] RICHARDSON S D, PLEWA M J, WAGNER E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research [J]. Mutation Research/Reviews in Mutation Research, 2007, 636(1/2/3): 178-242.
[3] 中华人民共和国卫生部, 中国国家标准化管理委员会. 中华人民共和国国家标准: 生活饮用水卫生标准 GB 5749—2006[S]. 北京: 中国标准出版社, 2007. Ministry of Health of the People's Republic of China, Standardization Administration of the People's Republic of China. National Standard (Mandatory) of the People's Republic of China: Standards for drinking water quality. GB 5749—2006[S]. Beijing: Standards Press of China, 2007(in Chinese).
[4] US EPA. Microbial and disinfection by-product rules-simultaneous compliance guidance manual [S]. United States Environmental Protection Agency, EPA 815-R-99-015, 1999.
[5] RICHARDSON S D, FASANO F, ELLINGTON J J, et al. Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water [J]. Environmental Science & Technology, 2008, 42(22): 8330-8338.
[6] CEMELI E, WAGNER E D, ANDERSON D, et al. Modulation of the cytotoxicity and genotoxicity of the drinking water disinfection byproduct lodoacetic acid by suppressors of oxidative stress [J]. Environmental Science & Technology, 2006, 40(6): 1878-1883.
[7] ESCOBAR-HOYOS L F, HOYOS-GIRALDO L S, LONDOÑO-VELASCO E, et al. Genotoxic and clastogenic effects of monohaloacetic acid drinking water disinfection by-products in primary human lymphocytes [J]. Water Research, 2013, 47(10): 3282-3290. doi: 10.1016/j.watres.2013.02.052
[8] PALS J A, ANG J K, WAGNER E D, et al. Biological mechanism for the toxicity of haloacetic acid drinking water disinfection byproducts [J]. Environmental Science & Technology, 2011, 45(13): 5791-5797.
[9] PLEWA M J, WAGNER E D, RICHARDSON S D, et al. Chemical and biological characterization of newly discovered iodoacid drinking water disinfection byproducts [J]. Environmental Science & Technology, 2004, 38(18): 4713-4722.
[10] RODRIGUEZ M J, SERODES J, ROY D. Formation and fate of haloacetic acids (HAAs) within the water treatment plant [J]. Water Research, 2007, 41(18): 4222-4232. doi: 10.1016/j.watres.2007.05.048
[11] CHALATIP R, CHAWALIT R, NOPAWAN R. Removal of haloacetic acids by nanofiltration [J]. Journal of Environmental Sciences, 2009, 21(1): 96-100. doi: 10.1016/S1001-0742(09)60017-6
[12] LI A Z, ZHAO X, HOU Y N, et al. The electrocatalytic dechlorination of chloroacetic acids at electrodeposited Pd/Fe-modified carbon paper electrode [J]. Applied Catalysis B:Environmental, 2012, 111/112: 628-635. doi: 10.1016/j.apcatb.2011.11.016
[13] BAYLESS W, ANDREWS R C. Biodegradation of six haloacetic acids in drinking water [J]. Journal of Water and Health, 2008, 6(1): 15-22. doi: 10.2166/wh.2007.002
[14] WANG K P, GUO J S, YANG M, et al. Decomposition of two haloacetic acids in water using UV radiation, ozone and advanced oxidation processes [J]. Journal of Hazardous Materials, 2009, 162(2/3): 1243-1248.
[15] XIAO Y J, ZHANG L F, ZHANG W, et al. Comparative evaluation of iodoacids removal by UV/persulfate and UV/H2O2 processes [J]. Water Research, 2016, 102: 629-639. doi: 10.1016/j.watres.2016.07.004
[16] LIU H, YU Q, FU H Y, et al. Pt supported on ordered microporous carbon as highly active catalyst for catalytic hydrodeiodination of iodinated X-ray contrast media [J]. Applied Catalysis B:Environmental, 2018, 222: 167-175. doi: 10.1016/j.apcatb.2017.10.006
[17] YUAN G, KEANE M A. Liquid phase catalytic hydrodechlorination of 2, 4-dichlorophenol over carbon supported palladium: An evaluation of transport limitations [J]. Chemical Engineering Science, 2003, 58(2): 257-267. doi: 10.1016/S0009-2509(02)00476-1
[18] NING X M, LI Y H, DONG B Q, et al. Electron transfer dependent catalysis of Pt on N-doped carbon nanotubes: Effects of synthesis method on metal-support interaction [J]. Journal of Catalysis, 2017, 348: 100-109. doi: 10.1016/j.jcat.2017.02.011
[19] XIA Y, MO Y, YANG Q Y, et al. Iodoacetic acid disrupting the thyroid endocrine system in vitro and in vivo [J]. Environmental Science and Technology, 2018, 52(13): 7545-7552. doi: 10.1021/acs.est.8b01802
[20] de PEDRO Z M, CASAS J A, GOMEZ-SAINERO L M, et al. Hydrodechlorination of dichloromethane with a Pd/AC catalyst: Reaction pathway and kinetics [J]. Applied Catalysis B:Environmental, 2010, 98(1/2): 79-85.
[21] ILINITCH O M, CUPERUS F P, NOSOVA L V, et al. Catalytic membrane in reduction of aqueous nitrates: Operational principles and catalytic performance [J]. Catalysis Today, 2000, 56(1/2/3): 137-145.
[22] BAEZA J A, CALVO L, GILARRANZ M A, et al. Catalytic behavior of size-controlled palladium nanoparticles in the hydrodechlorination of 4-chlorophenol in aqueous phase [J]. Journal of Catalysis, 2012, 293: 85-93. doi: 10.1016/j.jcat.2012.06.009
[23] LI M H, SUN Y H, TANG Y Q, et al. Efficient removal and recovery of copper by liquid phase catalytic hydrogenation using highly active and stable carbon-coated Pt catalyst supported on carbon nanotube [J]. Journal of Hazardous Materials, 2020, 388: 121745. doi: 10.1016/j.jhazmat.2019.121745