[1] DAUDA A B, AJADI A, TOLA-FABUNMI A S, et al. Waste production in aquaculture: Source, components and managements in different culture systems[J]. Aquaculture and Fisheries, 2019, 4(3): 81-88. doi: 10.1016/j.aaf.2018.10.002
[2] LUO G Z, XU J X, MENG H Y. Nitrate accumulation in biofloc aquaculture systems[J]. Aquaculture, 2020, 520: 734675. doi: 10.1016/j.aquaculture.2019.734675
[3] RAHIMI S, MODIN O, MIJAKOVIC I. Technologies for biological removal and recovery of nitrogen from wastewater[J]. Biotechnology Advances, 2020, 40: 107570.
[4] 马秋莹, 李东, 封莉, 等. 前置反硝化生物滤池深度脱氮效能与影响因素[J]. 环境工程学报, 2017, 11(9): 4932-4936.
[5] YUAN J Q, HUANG S B, YUAN H G, et al. Effects of chloramphenicol on the bacterial community structure and simultaneous nitrification and denitrification performance in a sequencing biofilm batch reactor[J]. Journal of Water Process Engineering, 2021, 42: 102095. doi: 10.1016/j.jwpe.2021.102095
[6] ZHAO J, FENG L J, YANG G F, et al. Development of simultaneous nitrification-denitrification (SND) in biofilm reactors with partially coupled a novel biodegradable carrier for nitrogen-rich water purification[J]. Bioresource Technology, 2017, 243: 800-809. doi: 10.1016/j.biortech.2017.06.127
[7] BHATTACHARYA R, MAZUMDER D. Simultaneous nitrification and denitrification in moving bed bioreactor and other biological systems[J]. Bioprocess and Biosystems Engineering, 2021, 44: 635-652. doi: 10.1007/s00449-020-02475-6
[8] 曹文娟, 徐祖信, 王晟. 生物膜中同步硝化反硝化的研究进展[J]. 水处理技术, 2012, 38(1): 1-5. doi: 10.3969/j.issn.1000-3770.2012.01.001
[9] 郑桂林, 张朝升, 曹勇锋, 等. DO在SBBR生物膜中传递及对同步硝化反硝化的影响[J]. 中国给水排水, 2016, 32(3): 22-26.
[10] GUO J B, ZHANG L H, CHEN W, et al. The regulation and control strategies of a sequencing batch reactor for simultaneous nitrification and denitrification at different temperatures[J]. Bioresource Technology, 2013, 133: 59-67. doi: 10.1016/j.biortech.2013.01.026
[11] 黄胜娟, 荣宏伟, 林孟霞. pH对同步硝化反硝化生物膜内溶解氧分布的影响[J]. 环境工程学报, 2015, 9(9): 4233-4238. doi: 10.12030/j.cjee.20150923
[12] 郑丽纯, 汤兵, 郑义, 等. 不同C/N对半悬浮生物填料的同步硝化反硝化过程的影响[J]. 环境科学学报, 2018, 38(11): 4273-4282.
[13] LANDES N, RAHMAN A, MORSE A, et al. Performance of a lab-scale membrane aerated biofilm reactor treating nitrogen dominant space-based wastewater through simultaneous nitrification-denitrification[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104644. doi: 10.1016/j.jece.2020.104644
[14] 许育新, 孙鹂, 喻曼, 等. 同步硝化反硝化脱氮在水产养殖废水处理中的应用[J]. 浙江农业科学, 2015, 56(7): 1119-1121.
[15] WANG J Y, RONG H W, CAO Y F, et al. Factors affecting simultaneous nitrification and denitrification (SND) in a moving bed sequencing batch reactor (MBSBR) system as revealed by microbial community structures[J]. Bioprocess and Biosystems Engineering, 2020, 43: 1833-1846. doi: 10.1007/s00449-020-02374-w
[16] XU Z S, DAI X H, CHAI X L. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes[J]. Science of the Total Environment, 2018, 634: 195-204. doi: 10.1016/j.scitotenv.2018.03.348
[17] LI P, ZUO J E, WANG Y J, et al. Tertiary nitrogen removal for municipal wastewater using a solidphase denitrifying biofilter with polycaprolactone as the carbon source and filtration medium[J]. Water Research, 2016, 93: 74-83. doi: 10.1016/j.watres.2016.02.009
[18] XU Z S, DAI X H, CHAI X L. Biological denitrification using PHBV polymer as solid carbon source and biofilm carrier[J]. Biochemical Engineering Journal, 2019, 146: 186-193. doi: 10.1016/j.bej.2019.03.019
[19] ZHAO J M, HE Q C, CHEN N, et al. Denitrification behavior in a woodchip-packed bioreactor with gradient filling for nitrate-contaminated water treatment[J]. Biochemical Engineering Journal, 2020, 154: 107454. doi: 10.1016/j.bej.2019.107454
[20] WANG J L, CHU L B. Biological nitrate removal from water and wastewater by solid-phasedenitrification process[J]. Biotechnology Advances, 2016, 34(6): 1103-1112. doi: 10.1016/j.biotechadv.2016.07.001
[21] 唐成婷, 罗国芝, 谭洪新, 等. 以PBS为载体和碳源的SND系统的脱氮效果研究[J]. 安全与环境学报, 2014, 14(5): 151-155.
[22] SUN H M, YANG Z C, YANG F F, et al. Enhanced simultaneous nitrification and denitrification performance in a fixed-bed system packed with PHBV/PLA blends[J]. International Biodeterioration & Biodegradation, 2020, 146: 104810.
[23] IBRAHIM M I, ALSAFADI D, ALAMRY K A, et al. Properties and applications of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites[J]. Journal of Polymers and the Environment, 2021, 29(4): 1010-1030. doi: 10.1007/s10924-020-01946-x
[24] SOLIMAN M, ELDYASTI A. Ammonia-oxidizing bacteria (AOB): Opportunities and applications: A review[J]. Reviews in Environmental Science and Bio-technology, 2018, 17(2): 285-321. doi: 10.1007/s11157-018-9463-4
[25] DAIMS H, LUCKER S, WAGNER M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria[J]. Trends in Microbiology, 2016, 24(9): 699-712. doi: 10.1016/j.tim.2016.05.004
[26] XU Z S, SONG L Y, DAI X H, et al. PHBV polymer supported denitrification system efficiently treated high nitrate concentration wastewater: Denitrification performance, microbial community structure evolution and key denitrifying bacteria[J]. Chemosphere, 2018, 197: 96-104. doi: 10.1016/j.chemosphere.2018.01.023
[27] DU R, PENG Y Z, JI J T, et al. Partial denitrification providing nitrite: Opportunities of extending application for anammox[J]. Environmental International, 2019, 131: 105001. doi: 10.1016/j.envint.2019.105001
[28] LU H J, CHANDRAN K, STENSEL D. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research, 2014, 64: 237-254. doi: 10.1016/j.watres.2014.06.042