[1] |
任志盛, 刘数华. 重金属污染土壤修复研究进展[J]. 硅酸盐通报, 2021, 40(6): 2042-2051.
|
[2] |
黄占斌, 李昉泽. 土壤重金属固化稳定化的环境材料研究进展[J]. 中国材料进展, 2017, 36(11): 840-851.
|
[3] |
严梅. 金属矿区重金属污染评价分析[J]. 中国资源综合利用, 2021, 39(4): 148-150. doi: 10.3969/j.issn.1008-9500.2021.04.044
|
[4] |
李红艺, 刘伟京, 陈勇, 等. 电镀污泥中铜和镍的回收和资源化技术[J]. 中国资源综合利用, 2005(12): 7-10. doi: 10.3969/j.issn.1008-9500.2005.12.007
|
[5] |
周瑞生, 刘红芳. 含铜工业污泥无害化资源化处理技术探讨[J]. 有色冶金设计与研究, 2021, 42(3): 42-44.
|
[6] |
SIYAL A A, SHAMSUDDIN M R, KHAN M. I, et al. A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes[J]. Journal of Environmental Management, 2018, 224: 327-329.
|
[7] |
HUANG H M, LIU J H, ZHANG P, et al. Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation[J]. Chemical Engineering Journal, 2017, 307: 696-706. doi: 10.1016/j.cej.2016.08.134
|
[8] |
王夏芳. 铜离子对环境危害现状及对策研究[J]. 国土与自然资源研究, 2015(1): 55-57. doi: 10.3969/j.issn.1003-7853.2015.01.018
|
[9] |
WOOD, JACOB, HUGHES, et al. Energy efficiency of the Outotec (R) ausmelt process for primary copper smelting[J]. Jom, 2017, 69(6).
|
[10] |
DIAMANTIS V, ERGUDER T H, AIVASIDIS A, et al. Wastewater disposal to landfill-sites: A synergistic solution for centralized management of olive mill wastewater and enhanced production of landfill gas[J]. Journal of Environmental Management, 2013, 128: 427-434. doi: 10.1016/j.jenvman.2013.05.051
|
[11] |
郝艳, 任连海, 王攀, 等. 国内外城市固体废弃物处理技术与模式[J]. 绿色科技, 2013(12): 143-145. doi: 10.3969/j.issn.1674-9944.2013.12.059
|
[12] |
葛亚男, 张弛, 袁进, 等. 水泥窑协同处置危险废物的环境影响研究[J]. 安全与环境工程, 2021, 28(4): 201-206.
|
[13] |
ANYA V P, BRAMESHUBER W G. Binding and leaching of trace elements in Portland cement pastes[J]. Cement and Concrete Research, 2016, 79: 92.
|
[14] |
VORADA K, WEN Z G, ZHENG K F, et al. Municipal solid waste (MSW) co-processing in cement kiln to relieve China's Msw treatment capacity pressure[J]. Resources, Conservation and Recycling, 2021: 167.
|
[15] |
王益峰, 祝红梅, 蒋旭光, 等. 水泥窑协同处置危险废物的研究现状及其发展[J]. 环境污染与防治, 2018, 40(8): 943-949.
|
[16] |
惠家状. 我国利用水泥窑协同处置污染物的现状及展望[J]. 中国水泥, 2021(2): 85-87.
|
[17] |
水泥窑协同处置固废技术展望[A]. 中国水泥协会环保和资源综合利用专业委员会、中国硅酸盐学会环境保护分会[J]. 第九届中国水泥行业环资高峰论坛-暨水泥企业绿色高质量发展研讨会文集[C]//中国水泥协会环保和资源综合利用专业委员会、中国硅酸盐学会环境保护分会:中国硅酸盐学会, 2020: 7.
|
[18] |
张江. 水泥熟料固化危险工业废弃物中重金属元素的研究[D]. 北京: 北京工业大学, 2004.
|
[19] |
WEI C, HONG J L, XU C Q, et al. Pollutants generated by cement production in China, their impacts, and the potential for environmental improvement[J]. Journal of Cleaner Production, 2015, 103: 61-69. doi: 10.1016/j.jclepro.2014.04.048
|
[20] |
KIM H T, LEE T G. A simultaneous stabilization and solidification of the top five most toxic heavy metals (Hg, Pb, As, Cr, and Cd)[J]. Chemosphere, 2017, 178: 479-485. doi: 10.1016/j.chemosphere.2017.03.092
|
[21] |
NAVARRO A, CARDELLACH E, CORBELLA M, et al. Immobilization of Cu, Pb and Zn in mine-contaminated soils using reactive materials[J]. Journal of Hazardous Materials, 2011, 186(2-3): 1576-1585. doi: 10.1016/j.jhazmat.2010.12.039
|
[22] |
王培铭, 李好新, 吴建国, 等. 不同氧化铜掺量下硅酸三钙矿物的形成(英文)[J]. 硅酸盐学报, 2007(10): 1353-1358. doi: 10.3321/j.issn:0454-5648.2007.10.016
|
[23] |
兰明章. 重金属在水泥熟料煅烧和水泥水化过程中的行为研究[D]. 北京: 中国建筑材料科学研究总院, 2008.
|
[24] |
李飞, 杨雷, 管学茂, 等. CuO对水泥熟料烧成及矿物组分的影响[J]. 水泥, 2010(9): 11-12. doi: 10.3969/j.issn.1002-9877.2010.09.003
|
[25] |
周枫, 王玉江, 张战营, 等. CuO对水泥熟料烧成及C3S形成动力学的影响[J]. 河南科技大学学报(自然科学版), 2011, 32(3): 5-8.
|
[26] |
商得辰. 重金属离子在水泥熟料中的固化行为及作用机理研究[D]. 武汉: 武汉理工大学, 2017.
|
[27] |
KOLOVOS K, TSIVILIS S, KAKALI G, et al. The effect of foreign ions on the reactivity of the CaO-SiO2-Al2O3-Fe2O3 system Part II: Cations[J] Cement and Concrete Research, 2002, 32: 463-469.
|
[28] |
YANG Y, XUE J, HUANG Q, et al. Studies on the solidification mechanisms of Ni and Cd in cement clinker during cement kiln co-processing of hazardous wastes[J]. Construction and Building Materials, 2014, 57: 138-143. doi: 10.1016/j.conbuildmat.2013.12.081
|
[29] |
国家环境保护总局, 国家质量监督检验检疫总局. 废物鉴别标准 浸出毒性鉴别: GB 5085.3-2007[S]. 北京: 中国环境科学出版社, 2007.
|