[1] |
张敏恒, 赵平, 严秋旭, 等. 新烟碱类杀虫剂市场与环境影响[J]. 农药, 2012, 51(12): 859-862.
|
[2] |
BASS C, DENHOLM I, WILLIAMSON M S, et al. The global status of insect resistance to neonicotinoid insecticides[J]. Pesticide Biochemistry and Physiology, 2015, 121: 78-87. doi: 10.1016/j.pestbp.2015.04.004
|
[3] |
胡倩, 阳海, 石妮, 等. 光催化体系中噻虫胺降解动力学及机制[J]. 环境科学, 2016, 37(9): 3524-3531.
|
[4] |
SIMON-DELSO N, AMARAL-ROGERS V, BELZUNCES L P, et al. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites[J]. Environmental Science and Pollution Research, 2015, 22(1): 5-34. doi: 10.1007/s11356-014-3470-y
|
[5] |
ZHANG C, TIAN D, YI X H, et al. Occurrence, distribution and seasonal variation of five neonicotinoid insecticides in surface water and sediment of the Pearl Rivers, South China[J]. Chemosphere, 2019, 217: 437-446. doi: 10.1016/j.chemosphere.2018.11.024
|
[6] |
MAHAI G, WAN Y J, XIA W, et al. A nationwide study of occurrence and exposure assessment of neonicotinoid insecticides and their metabolites in drinking water of China[J]. Water Research, 2021, 189: 116630. doi: 10.1016/j.watres.2020.116630
|
[7] |
WHITEHORN P R, O'CONNOR S, WACKERS F L, et al. Neonicotinoid pesticide reduces bumble bee colony growth and queen production[J]. Science, 2012, 336(6079): 351-352. doi: 10.1126/science.1215025
|
[8] |
MANDAL A, SINGH N, PURAKAYASTHA T J. Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal[J]. Science of the Total Environment, 2017, 577: 376-385. doi: 10.1016/j.scitotenv.2016.10.204
|
[9] |
KIM K H, KIM J Y, CHO T S, et al. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida)[J]. Bioresource Technology, 2012, 118: 158-162. doi: 10.1016/j.biortech.2012.04.094
|
[10] |
NIE T, HAO P, ZHAO Z, et al. Effect of oxidation-induced aging on the adsorption and co-adsorption of tetracycline and Cu2+ onto biochar[J]. Science of the Total Environment, 2019, 673: 522-532. doi: 10.1016/j.scitotenv.2019.04.089
|
[11] |
YIN Y Y, GUO X T, PENG D. Iron and manganese oxides modified maize straw to remove tylosin from aqueous solutions[J]. Chemosphere, 2018, 205: 156-165. doi: 10.1016/j.chemosphere.2018.04.108
|
[12] |
YU X Y, MU C L, GU C, et al. Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils[J]. Chemosphere, 2011, 85(8): 1284-1289. doi: 10.1016/j.chemosphere.2011.07.031
|
[13] |
TAHA S M, AMER M E, ELMARSAFY A E, et al. Adsorption of 15 different pesticides on untreated and phosphoric acid treated biochar and charcoal from water[J]. Journal of Environmental Chemical Engineering, 2014, 2(4): 2013-2025. doi: 10.1016/j.jece.2014.09.001
|
[14] |
马锋锋, 赵保卫. 不同热解温度制备的玉米芯生物炭对对硝基苯酚的吸附作用[J]. 环境科学, 2017, 38(2): 837-844.
|
[15] |
李政剑, 石宝友, 苏宇, 等. 粉末活性炭粒径对水中菲吸附动力学的影响效应研究[J]. 环境科学学报, 2013, 33(1): 67-72.
|
[16] |
LYU H H, XIA S Y, TANG J C, et al. Thiol-modified biochar synthesized by a facile ball-milling method for enhanced sorption of inorganic Hg2+ and organic CH3Hg+[J]. Journal of Hazardous Materials, 2020, 384: 121357. doi: 10.1016/j.jhazmat.2019.121357
|
[17] |
LIATSOU I, PASHALIDIS I, DOSCHE C. Cu(II) adsorption on 2-thiouracil-modified Luffa cylindrica biochar fibres from artificial and real samples, and competition reactions with U(VI)[J]. Journal of Hazardous Materials, 2020, 383: 120950. doi: 10.1016/j.jhazmat.2019.120950
|
[18] |
ZHU S H, ZHAO J J, ZHAO N, et al. Goethite modified biochar as a multifunctional amendment for cationic Cd(II), anionic As(III), roxarsone, and phosphorus in soil and water[J]. Journal of Cleaner Production, 2020, 247: 119579. doi: 10.1016/j.jclepro.2019.119579
|
[19] |
赵志伟, 陈晨, 梁志杰, 等. 锰氧化物改性生物炭对水中四环素的强化吸附[J]. 农业环境科学学报, 2021, 40(1): 194-201. doi: 10.11654/jaes.2020-0803
|
[20] |
LIU Y, ZHANG L X, ZHANG Z F, et al. Citrate-modified biochar for simultaneous and efficient plant-available silicon release and copper adsorption: Performance and mechanisms[J]. Journal of Environmental Management, 2022, 301: 113819. doi: 10.1016/j.jenvman.2021.113819
|
[21] |
杨广西. 生物炭的化学改性及其对铜的吸附研究[D]. 合肥: 中国科学技术大学, 2014.
|
[22] |
蒋子旸, 徐敏, 伍钧. 高铁酸钾/高锰酸钾改性生物炭对Cd2+的吸附研究[J]. 农业环境科学学报, 2021, 40(4): 876-883. doi: 10.11654/jaes.2020-1123
|
[23] |
ZHANG J Z, MA X F, YUAN L, et al. Comparison of adsorption behavior studies of Cd2+ by vermicompost biochar and KMnO4-modified vermicompost biochar[J]. Journal of Environmental Management, 2020, 256: 109959. doi: 10.1016/j.jenvman.2019.109959
|
[24] |
管欢, 黄慧俐, 行艳景, 等. 噻虫胺在甘蔗和土壤中的残留分析及消解动态[J]. 现代农药, 2015, 14(2): 42-45. doi: 10.3969/j.issn.1671-5284.2015.02.014
|
[25] |
LI R N, WANG Z W, ZHAO X T, et al. Magnetic biochar-based manganese oxide composite for enhanced fluoroquinolone antibiotic removal from water[J]. Environmental science and pollution research international, 2018, 25(31): 31136-31148. doi: 10.1007/s11356-018-3064-1
|
[26] |
LIU W J, ZENG F X, JIANG H, et al. Preparation of high adsorption capacity bio-chars from waste biomass[J]. Bioresource Technology, 2011, 102(17): 8247-8252. doi: 10.1016/j.biortech.2011.06.014
|
[27] |
张涵瑜, 王兆炜, 高俊红, 等. 芦苇基和污泥基生物炭对水体中诺氟沙星的吸附性能[J]. 环境科学, 2016, 37(2): 689-696.
|
[28] |
GAO J, HEDMAN C, LIU C, et al. Transformation of sulfamethazine by manganese oxide in aqueous solution[J]. Environmental Science & Technology, 2012, 46(5): 2642-2651.
|
[29] |
LIN L, ZHOU S W, HUANG Q, et al. Capacity and mechanism of arsenic adsorption on red soil supplemented with ferromanganese oxide-biochar composites[J]. Environmental science and pollution research international, 2018, 25(20): 20116-20124. doi: 10.1007/s11356-018-2188-7
|
[30] |
TAN X L, FANG M, CHEN C L, et al. Counterion effects of nickel and sodium dodecylbenzene sulfonate adsorption to multiwalled carbon nanotubes in aqueous solution[J]. Carbon, 2008, 46(13): 1741-1750. doi: 10.1016/j.carbon.2008.07.023
|
[31] |
OUYANG D, CHEN Y, YAN J C, et al. Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1, 4-dioxane: Important role of biochar defect structures[J]. Chemical Engineering Journal, 2019, 370: 614-624. doi: 10.1016/j.cej.2019.03.235
|
[32] |
LIU S, XU W H, LIU Y G, et al. Facile synthesis of Cu(II) impregnated biochar with enhanced adsorption activity for the removal of doxycycline hydrochloride from water[J]. Science of the Total Environment, 2017, 592: 546-553. doi: 10.1016/j.scitotenv.2017.03.087
|
[33] |
JOSHI T P, ZHANG G, CHENG H Y, et al. Transformation of para arsanilic acid by manganese oxide: Adsorption, oxidation, and influencing factors[J]. Water Research, 2017, 116: 126-134. doi: 10.1016/j.watres.2017.03.028
|
[34] |
WANG X, HUANG K, CHEN Y, et al. Preparation of dumbbell manganese dioxide/gelatin composites and their application in the removal of lead and cadmium ions[J]. Journal of Hazardous Materials, 2018, 350: 46-54. doi: 10.1016/j.jhazmat.2018.02.020
|
[35] |
HUANG J Z, ZHONG S F, DAI Y F, et al. Effect of MnO2 Phase Structure on the Oxidative Reactivity toward Bisphenol A Degradation[J]. Environmental Science & Technology, 2018, 52(19): 11309-11318.
|
[36] |
孙航, 蒋煜峰, 石磊平, 等. 不同热解及来源生物炭对西北黄土吸附敌草隆的影响[J]. 环境科学, 2016, 37(12): 4857-4866.
|
[37] |
谭珍珍, 张学杨, 骆俊鹏, 等. 小麦秸秆生物炭对四环素的吸附特性研究[J]. 水处理技术, 2019, 45(2): 32-38.
|
[38] |
ZHOU Y Y, LIU X C, XIANG Y J, et al. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling[J]. Bioresource Technology, 2017, 245(Pt A): 266-273.
|
[39] |
张连科, 王洋, 王维大, 等. 生物炭负载纳米羟基磷灰石复合材料的制备及对铅离子的吸附特性[J]. 化工进展, 2018, 37(9): 3492-3501.
|
[40] |
孙绪兵, 吴雪梅, 朱建发, 等. 羧基甲壳素对Pb(Ⅱ)的吸附性能及机理研究[J]. 中国环境科学, 2018, 38(8): 3018-3028. doi: 10.3969/j.issn.1000-6923.2018.08.030
|
[41] |
徐大勇, 张苗, 杨伟伟, 等. 氧化铝改性污泥生物炭粒制备及其对Pb(Ⅱ)的吸附特性[J]. 化工进展, 2020, 39(3): 1153-1166.
|
[42] |
LIU P, LIU W J, JIANG H, et al. Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution[J]. Bioresource Technology, 2012, 121: 235-240. doi: 10.1016/j.biortech.2012.06.085
|
[43] |
LI H Q, HU J T, MENG Y, et al. An investigation into the rapid removal of tetracycline using multilayered graphene-phase biochar derived from waste chicken feather[J]. Science of the Total Environment, 2017, 603-604: 39-48. doi: 10.1016/j.scitotenv.2017.06.006
|
[44] |
杨奇亮, 吴平霄. 改性多孔生物炭的制备及其对水中四环素的吸附性能研究[J]. 环境科学学报, 2019, 39(12): 3973-3984.
|
[45] |
PEIRIS C, GUNATILAKE S R, MLSNA T E, et al. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review[J]. Bioresource Technology, 2017, 246: 150-159. doi: 10.1016/j.biortech.2017.07.150
|
[46] |
李蕊宁. 改性马铃薯秸秆生物炭对水体中典型抗生素的吸附性能研究[D]. 兰州: 兰州大学, 2018.
|
[47] |
赵华轩, 郎印海. 磁性生物炭对水中CIP和OFL的吸附行为和机制[J]. 环境科学, 2018, 39(8): 3729-3735.
|
[48] |
ZHU X D, LIU Y C, ZHOU C, et al. A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline[J]. Carbon, 2014, 77: 627-636. doi: 10.1016/j.carbon.2014.05.067
|
[49] |
ZHAO R L, MA X X, XU J Q, et al. Removal of the Pesticide Imidacloprid from Aqueous Solution by Biochar Derived from Peanut Shell[J]. BioResources, 2018, 13(3): 5656-5669.
|
[50] |
AHMED M B, ZHOU J L, NGO H H, et al. Single and competitive sorption properties and mechanism of functionalized biochar for removing sulfonamide antibiotics from water[J]. Chemical Engineering Journal, 2017, 311: 348-358. doi: 10.1016/j.cej.2016.11.106
|
[51] |
王宇宙, 吴安心. 芳环超分子体系中的π-π作用[J]. 有机化学, 2008, 28(6): 997-1011.
|
[52] |
KANG J, LIU H J, ZHENG Y M, et al. Application of nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, UV-Visible spectroscopy and kinetic modeling for elucidation of adsorption chemistry in uptake of tetracycline by zeolite beta[J]. Journal of Colloid and Interface Science, 2011, 354(1): 261-267. doi: 10.1016/j.jcis.2010.10.065
|