[1] |
赵大伟, 张鹏. 化学镀铜的应用与发展[J]. 黑龙江冶金, 2010, 31(1): 38-39.
|
[2] |
田庆华, 闫剑锋, 郭雪益. 化学镀铜的应用与发展概况[J]. 电镀与涂饰, 2007, 26(4): 38-41. doi: 10.3969/j.issn.1004-227X.2007.04.012
|
[3] |
LIN Y M, YEN S C. Effects of additives and chelating agents on electroless copper plating[J]. Applied Surface Science, 2001, 178(1-4): 116-126. doi: 10.1016/S0169-4332(01)00306-3
|
[4] |
YUAN X L, GAO J, YANG Z F, et al. New electroless copper plating bath using sodium hypophosphite as reductant[J]. Surface Engineering, 2012, 28(5): 377-381. doi: 10.1179/1743294411Y.0000000049
|
[5] |
黄万抚, 胡昌顺, 曹明帅, 等. 难处理含铜废水处理技术研究[J]. 应用化工, 2018, 47(10): 2248-2253. doi: 10.3969/j.issn.1671-3206.2018.10.047
|
[6] |
李立清, 冯罗, 吴盼旺, 等. 新型次磷酸钠体系化学镀铜添加剂及其对镀液和镀层性能的影响[J]. 表面技术, 2020, 49(7): 329-337.
|
[7] |
CHANG Y, DENG L, MENG X Y, et al. Closed-loop electrochemical recycling of spent copper(II) from etchant wastewater using a carbon nanotube modified graphite felt anode[J]. Environmental Science & Technology, 2018, 52: 5940-5948.
|
[8] |
LIU P, LI C L, LIANG X G, et al. Advanced oxidation of hypophosphite and phosphite using a UV/H2O2 process[J]. Environmental Technology, 2013, 34(15): 2231-2239. doi: 10.1080/09593330.2013.765917
|
[9] |
LIU P, Li C, LIANG X, et al. Recovery of high purity ferric phosphate from a spent electroless nickel plating bath[J]. Green Chemistry, 2014, 16(3): 1217-1224. doi: 10.1039/C3GC41779D
|
[10] |
郭燕妮, 方增坤, 胡杰华, 等. 化学沉淀法处理含重金属废水的研究进展[J]. 工业水处理, 2011, 31(12): 9-12. doi: 10.11894/1005-829x.2011.31(12).9
|
[11] |
王蓬勃, 李金花, 周保学, 等. 电镀含铜废水的资源化回收利用[J]. 环境科学与技术, 2020, 43(S2): 184-187.
|
[12] |
张惠灵, 杨瑾, 吴健, 等. 电沉积法回收离子交换再生液中Cu2+的研究[J]. 电镀与精饰, 2014, 36(3): 43-46. doi: 10.3969/j.issn.1001-3849.2014.03.011
|
[13] |
ZHAO X, ZHANG J J, QIAO M, et al. Enhanced photoelectrocatalytic decomposition of copper cyanide complexes and simultaneous recovery of copper with a Bi2MoO6 electrode under visible light by EDTA/K4P2O7[J]. Environmental Science & Technology, 2015, 49(7): 4567-4574.
|
[14] |
陈佩仪, 李彦旭, 孙楹煌, 等. 光电催化水处理技术研究进展[J]. 工业水处理, 2005, 25(12): 13-17. doi: 10.3969/j.issn.1005-829X.2005.12.004
|
[15] |
JEON T H, KOO M S, KIM H, et al. Dual-functional photocatalytic and photoelectrocatalytic systems for energy- and resource-recovering water treatment[J]. ACS Catalysis, 2018, 8(12): 11542-11563. doi: 10.1021/acscatal.8b03521
|
[16] |
PARK H, PARK Y, KIM W, et al. Surface modification of TiO2 photocatalyst for environmental applications[J]. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2013, 15: 1-20. doi: 10.1016/j.jphotochemrev.2012.10.001
|
[17] |
MACAK J M, TSUCHIYA H, TAVEIRA L, et al. Smooth anodic TiO2 nanotube[J]. Angewandte Chemie International Edition, 2005, 44: 7463-7465. doi: 10.1002/anie.200502781
|
[18] |
MOR G K, SHANKAR K, PAULOSE M, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells[J]. Nano Letters, 2006, 6: 215-218. doi: 10.1021/nl052099j
|
[19] |
WANG J, LIN ZQ. Anodic Formation of Ordered TiO2 Nanotube Arrays: Effects of electrolyte temperature and anodization potential[J]. Journal of Physical Chemistry C, 2009, 113: 4026-4030. doi: 10.1021/jp811201x
|
[20] |
ZHAO X, ZHANG J J, QU J H. Photoelectrocatalytic oxidation of Cu-cyanides and Cu-EDTA at TiO2 nanotube electrode[J]. Electrochimica Acta, 2015, 180: 129-137. doi: 10.1016/j.electacta.2015.08.103
|
[21] |
ÖĞÜTVEREN Ü B, TÖRÜ E, KOPARAL S. Removal of cyanide by anodic oxidation for wastewater treatment[J]. Water Research, 1999,33(8): 1851-1856.
|
[22] |
CHEN W S, HUANHG C P. Mineralization of aniline in aqueous solution by electrochemical activation of per-sulfate[J]. Chemosphere, 2015, 125: 175-181. doi: 10.1016/j.chemosphere.2014.12.053
|
[23] |
MILLER J S, OLEJNIK D. Photolysis of polycyclic aromatic hydrocarbons in water[J]. Water Research, 2001, 35(1): 233-243. doi: 10.1016/S0043-1354(00)00230-X
|
[24] |
HERNLEM B J, Electrolytic destruction of urea in dilute chloride solution using DSA electrodes in a recycled batch cell[J]. Water Research, 2005, 39(11): 2245-2252.
|
[25] |
NAM S W, YOON Y, CHOI D J, et al. Degradation characteristics of metoprolol during UV/chlorination reaction and a factorial design optimization[J]. Journal of Hazardous Materials, 2015, 285: 453-463. doi: 10.1016/j.jhazmat.2014.11.052
|
[26] |
XIAO S, QU J, ZHAO X, LIU H, et al. Electrochemical process combined with UV light irradiation for synergistic degradation of ammonia in chloride-containing solutions[J]. Water Research, 2009, 43(5): 1432-1440. doi: 10.1016/j.watres.2008.12.023
|