[1] |
JEONG B, OH M S, PARK H M, et al. Elimination of microcystin-LR and residual Mn species using permanganate and powdered activated carbon: Oxidation products and pathways[J]. Water Research, 2017, 114: 189-199. doi: 10.1016/j.watres.2017.02.043
|
[2] |
LIU Y L, WALKER H W, LENHART J J. Adsorption of microcystin-LR onto kaolinite, illite and montmorillonite[J]. Chemosphere, 2019, 220: 696-705. doi: 10.1016/j.chemosphere.2018.12.137
|
[3] |
KIM M S, LEE C, et al. Ozonation of microcystins: Kinetics and toxicity decrease[J]. Environmental Science & Technology, 2019, 53: 6427-6435.
|
[4] |
CHANG J, CHEN Z, WANG Z, et al. Ozonation degradation of microcystin-LR in aqueous solution: Intermediates, byproducts and pathways[J]. Water Research, 2014, 63: 52-61. doi: 10.1016/j.watres.2014.06.007
|
[5] |
LI J M, LI R H, LI J. Current research scenario for microcystins biodegradation-A review on fundamental knowledge, application prospects and challenges[J]. Science of the Total Environment, 2017, 595: 615-632. doi: 10.1016/j.scitotenv.2017.03.285
|
[6] |
KUMAR P, HEGDE K, BRAR S K, et al. Biodegradation of microcystin-LR using acclimatized bacteria isolated from different units of the drinking water treatment plant[J]. Environmental Pollution, 2018, 242: 407-416. doi: 10.1016/j.envpol.2018.07.008
|
[7] |
CHEN D J, CHENG Y L, ZHOU N, et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review[J]. Journal of Cleaner Production, 2020, 268: 121725. doi: 10.1016/j.jclepro.2020.121725
|
[8] |
FUJISHIMA A, HONDA K. Photolysis-decomposition of water at the surface of an irradiated semiconductor[J]. Nature, 1972, 238(5385): 37-38.
|
[9] |
WANG Y Y, CHEN Y X, BARAKAT T, et al. Recent advances in non-metal doped titania for solar-driven photocatalytic/photoelectrochemical water-splitting[J]. Journal of Energy Chemistry, 2022, 66: 529-559. doi: 10.1016/j.jechem.2021.08.038
|
[10] |
DONG H R, ZENG G M, TANG L, et al. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures[J]. Water Research, 2015, 79: 128-146. doi: 10.1016/j.watres.2015.04.038
|
[11] |
SHEYDAEI M, SHIADEH H R K, AYOUBI-FEIZ B, et al. Preparation of nano N-TiO2/graphene oxide/titan grid sheets for visible light assisted photocatalytic ozonation of cefixime[J]. Chemical Engineering Journal, 2018, 353: 138-146. doi: 10.1016/j.cej.2018.07.089
|
[12] |
LIN L, WANG H Y, XU P. Immobilized TiO2-reduced graphene oxide nanocomposites on optical fibers as high performance photocatalysts for degradation of pharmaceuticals[J]. Chemical Engineering Journal, 2017, 310(2): 389-398.
|
[13] |
YAN Z D, YANG X N, LYNCH L, et al. Comparative evaluation of the mechanisms of toxicity of graphene oxide and graphene oxide quantum dots to blue-green algae microcystis aeruginosa in the aquatic environment[J]. Journal of Hazardous Materials, 2021, 27: 127898.
|
[14] |
陈俊伟, 李丽丽, 王菲凤, 等. N-TiO2/硅藻土负载型纳米材料可见光催化降解水中Microcystin-LR[J]. 福建师范大学学报(自然科学版), 2019, 35(6): 51-59.
|
[15] |
PRASAD C, LIU Q Q, TANG H, et al. An overview of graphene oxide supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications[J]. Journal of Molecular Liquids, 2020, 297: 111826. doi: 10.1016/j.molliq.2019.111826
|
[16] |
任建, 李光照, 韩锐, 等. 溶胶-凝胶法原位制备还原氧化石墨烯/二氧化钛复合材料及光催化性能[J]. 功能材料, 2019, 50(7): 7185-7190.
|
[17] |
SUN X Q, JI S D, WANG M Q, et al. Fabrication of porous TiO2-RGO hybrid aerogel for high-efficiency, visible-light photodegradation of dyes[J]. Journal of Alloys and Compounds, 2020, 819: 153033. doi: 10.1016/j.jallcom.2019.153033
|
[18] |
LUI G, LIAO J, DUAN A, et al. Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance[J]. Journal of Materials Chemistry A, 2013, 1(39): 12255-12262. doi: 10.1039/c3ta12329d
|
[19] |
ZHOU Y J, Li J Z, LIU C Y, et al. Construction of 3D porous g-C3N4/AgBr/rGO composite for excellent visible light photocatalytic activity[J]. Applied Surface Science, 2018, 458: 586-596. doi: 10.1016/j.apsusc.2018.07.121
|
[20] |
WANG P, ZHAN S, XIA Y, et al. The fundamental role and mechanism of reduced graphene oxide in rGO/Pt-TiO2 nanocomposite for high-performance photocatalytic water splitting[J]. Applied Catalysis B:Environmental, 2017, 207: 335-346. doi: 10.1016/j.apcatb.2017.02.031
|
[21] |
陈越, 何大伟, 王永生, 等. 水热法制备二氧化钛纳米管-石墨烯复合光催化剂及其光催化性能[J]. 发光学报, 2019, 40(2): 177-182.
|
[22] |
ZHANG L, ZHANG Q H, XIE H Y, et al. Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis[J]. Applied Catalysis B:Environmental, 2017, 201: 470-478. doi: 10.1016/j.apcatb.2016.08.056
|
[23] |
CALZA P, HADJICOSTAS C, SAKKAS V A, et al. Photocatalytic transformation of the antipsychotic drug risperidone in aqueous media on reduced graphene oxide-TiO2 composites[J]. Applied Catalysis B:Environmental, 2016, 183: 96-106. doi: 10.1016/j.apcatb.2015.10.010
|
[24] |
ZHOU X, ZHOU S Q, MA F Z, et al. Synergistic effects and kinetics of rGO-modified TiO2 nanocomposite on adsorption and photocatalytic degradation of humic acid[J]. Journal of Environmental Management, 2019, 235: 293-302.
|
[25] |
张宏忠, 秦小青, 王明花. 石墨烯/TiO2复合物的制备及其光催化性能[J]. 环境工程学报, 2016, 10(1): 169-174. doi: 10.12030/j.cjee.20160127
|
[26] |
WANG P, WANG J, WANG X F, et al. One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental, 2013, 132–133: 452-459.
|
[27] |
LIU S, LIU C, WANG W, et al. Unique photocatalytic oxidation reactivity and selectivity of TiO2-graphene nanocomposites[J]. Nanoscale, 2012, 4(10): 3193-3200. doi: 10.1039/c2nr30427a
|
[28] |
SUBODH, CHAUDHARY K, PRAKASH K, et al. TiO2 nanoparticles immobilized organo-reduced graphene oxide hybrid nanoreactor for catalytic applications[J]. Applied Surface Science, 2020, 509: 144902. doi: 10.1016/j.apsusc.2019.144902
|
[29] |
MOHSIN N, MOKREMA M, JIHO K, et al. Photodegradation of Microcystin-LR using graphene-TiO2/sodium alginate aerogels[J]. Carbohydrate Polymers, 2018, 199: 109-118. doi: 10.1016/j.carbpol.2018.07.007
|
[30] |
XU S B, JIANG L, YANG H G, et al. Structure and photocatalytic activity of polythiophene/TiO2 composite particles prepared by photoinduced polymerization[J]. Chinese Journal of Catalysis, 2011, 32(3): 536-545.
|
[31] |
许文泽, 杨春风, 李静, 等. 二氧化钛光催化氧化阿散酸[J]. 环境科学, 2016, 37(1): 193-197.
|
[32] |
HE X H, WANG A Z, WU P, et al. Photocatalytic degradation of microcystin-LR by modified TiO2 photocatalysis: A review[J]. Science of the Total Environment, 2020, 743: 140694. doi: 10.1016/j.scitotenv.2020.140694
|
[33] |
杨静, 陈登霞, 邓安平, 等. 掺氮二氧化钛可见光照射降解微囊藻毒素-LR[J]. 中国科学:化学, 2010, 40(11): 1688-1696.
|
[34] |
HU X, HU X, TANG C, et al. Mechanisms underlying degradation pathways of microcystin-LR with doped TiO2 photocatalysis[J]. Chemical Engineering Journal, 2017, 330: 355-371. doi: 10.1016/j.cej.2017.07.161
|
[35] |
FOTIOU T, TRIANTIS T M, KALOUDIS T, et al. Photocatalytic degradation of Microcystin-LR and off-odor compounds in water under UV-A and solar light with a nanostructured photocatalyst based on reduced graphene oxide-TiO2 composite. Identification of intermediate products[J]. Industrial Engineering Chemistry Research, 2013, 52(39): 13991-14000. doi: 10.1021/ie400382r
|