[1] WEI L, CHENG Z, XIN L, et al. Ho-modified Mn-Ce/TiO2 for low-temperature SCR of NO with NH3: Evaluation and characterization [J]. Chinese Journal of Catalysis, 2018, 39(10): 1653-1663. doi: 10.1016/S1872-2067(18)63099-2
[2] SHAO J, LIN F, HUANG Y, et al. MnO2 fabrication with rational design of morphology for enhanced activity in NO oxidation and SO2 resistance[J]. Applied Surface Science, 2020, 503: 144064.
[3] ZHANG H, ZHOU C, GALVEZ M E, et al. MnOx-CeO2 mixed oxides as the catalyst for NO-assisted soot oxidation: The key role of NO adsorption/desorption on catalytic activity [J]. Applied Surface Science, 2018, 462: 678-684. doi: 10.1016/j.apsusc.2018.08.186
[4] LIU J, WEI Y, LI P Z, et al. Experimental and theoretical investigation of mesoporous MnO2 nanosheets with oxygen vacancy for high-efficiency catalytic deNOx [J]. ACS Catalysis, 2018, 8(5): 3865-3874. doi: 10.1021/acscatal.8b00267
[5] KWON D W, NAM K B, HONG S C. The role of ceria on the activity and SO2 resistance of catalysts for the selective catalytic reduction of NOx by NH3 [J]. Applied Catalysis B Environmental, 2015, 166/167: 37-44. doi: 10.1016/j.apcatb.2014.11.004
[6] XU Y, WU X, LIN Q, et al. SO2 promoted V2O5-MoO3/TiO2 catalyst for NH3-SCR of NO, at low temperatures [J]. Applied Catalysis A:General, 2018, 570: 42-50.
[7] ZHANG G D, HUANG X S, TANG Z C. Enhancing water resistance of a Mn-based catalyst for low temperature SCR reaction by modifying super hydrophobic layer [J]. Applied Materials & Interfaces, 2019, 11(40): 36598-36606.
[8] YAO X, KONG T, YU S, et al. Influence of different supports on the physicochemical properties and denitration performance of the supported Mn-based catalysts for NH3-SCR at low temperature [J]. Applied Surface Science, 2017, 402: 208-217. doi: 10.1016/j.apsusc.2017.01.081
[9] HUANG C Y, GUO R T, PAN W G, et al. SCR of NOx by NH3 over MnFeOx@TiO2 catalyst with a core-shell structure: The improved K resistance [J]. Journal of the Energy Institute, 2018, 92(5): 1364-1378.
[10] GONG P J, LIN J, FANG D, et al. Effects of surface physicochemical properties on NH3-SCR activity of MnO2 catalysts with different crystal structures [J]. Chinese Journal of Catalysis, 2017, 38(11): 1925-1934. doi: 10.1016/S1872-2067(17)62922-X
[11] LIU Y, WEN J, ZANG P Y, et al. Nitric acid-treated birnessite-type MnO2: An efficient and hydrophobic material for humid ozone decomposition [J]. Applied Surface Science, 2018, 442: 640-649. doi: 10.1016/j.apsusc.2018.02.204
[12] YU C, DONG L, CHEN F, et al. Low-temperature SCR of NOx by NH3 over MnOx/SAPO-34 prepared by two different methods: A comparative study [J]. Environmental Technology, 2017, 38(5/8): 1030-1042.
[13] ZUO H, XU D, LIU W, et al. Heat-treated dolomite-palygorskite clay supported MnOx catalysts prepared by various methods for low temperature selective catalytic reduction (SCR) with NH3 [J]. Applied Clay Science, 2018, 152(2): 276-283.
[14] YANG H, WEI J, LIU W Q, et al. Synthesis of a carbon@Rectorite nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of methylene blue and neutral red from aqueous solutions [J]. Desalination & Water Treatment, 2016, 57(29): 13574-13585.
[15] WU D, ZHENG P, CHAN P R, et al. Preparation and characterization of magnetic rectorite/iron oxide nanocomposites and its application for the removal of the dyes [J]. Chemical Engineering Journal, 2011, 174(1): 489-494. doi: 10.1016/j.cej.2011.09.029
[16] EZZATAHMADI N, GODWIN A, MILLAR G, et al. Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review [J]. Chemical Engineering Journal, 2017, 312: 336-350. doi: 10.1016/j.cej.2016.11.154
[17] XU W, ZHANG G, CHEN H, et al. Mn/beta and Mn/ZSM-5 for the low-temperature selective catalytic reduction of NO with ammonia: Effect of manganese precursors [J]. Chinese Journal of Catalysis, 2018, 39(1): 118-127. doi: 10.1016/S1872-2067(17)62983-8
[18] PUDUKUDY M, YAAKOB Z. Synthesis, characterization, and photocatalytic performance of mesoporous α-Mn2O3 microspheres prepared via a precipitation route [J]. Journal of Nanoparticles, 2016, 2016: 1-7.
[19] HWANG S, JO S H, KIM J, et al. Catalytic activity of MnOx/TiO2 catalysts synthesized with different manganese precursors for the selective catalytic reduction of nitrogen oxides [J]. Reaction Kinetics, Mechanisms and Catalysis, 2016, 117(2): 583-591. doi: 10.1007/s11144-015-0948-7
[20] ZHANG Q, ZHANG Y, ZHANG T, et al. Influence of preparation methods on iron-tungsten composite catalyst for NH3-SCR of NO: The active sites and reaction mechanism [J]. Applied Surface Science, 2019, 503: 144190.
[21] HUANG X, LI S N, QIU W G, et al. Effect of organic assistant on the performance of ceria-based catalysts for the selective catalytic reduction of NO with ammonia [J]. Catalysts, 2019, 9(4): 357-357. doi: 10.3390/catal9040357
[22] ILIOPOULOU E F, EVDOU A P, LEMONIDOU A A, et al. Ag/alumina catalysts for the selective catalytic reduction of NOx using various reductants [J]. Applied Catalysis A General, 2004, 274(1/2): 179-189.
[23] 吴琼, 张先龙, 马康, 等. Mnx /SEP (海泡石) 催化剂低温NH3-SCR脱硝性能 [J]. 环境化学, 2018, 37(7): 1609-1618. doi: 10.7524/j.issn.0254-6108.2017092802 WU Q, ZHANG X L, MA K, et al. Mnx/SEP (sepiolite) catalysts for low temperature NH3-SCR catalytic reduction of NO [J]. Environmental Chemistry, 2018, 37(7): 1609-1618(in Chinese). doi: 10.7524/j.issn.0254-6108.2017092802
[24] ZHANG X L, WAN P M, WU X P, et al. Application of MnOx/HNTs catalysts in low-temperature NO reduction with NH3 [J]. Catalysis Communications, 2016, 83: 18-21. doi: 10.1016/j.catcom.2016.05.003
[25] 吴彦霞, 房晶瑞, 雷本喜, 等. 制备条件对Mn-Fe/TiO2催化剂低温脱硝性能的影响 [J]. 化工环保, 2014, 34(4): 380-384. doi: 10.3969/j.issn.1006-1878.2014.04.017 WU Y X, FANG J R, LEI B X, et al. Effect of preparation conditions on low-temperature denitrification performance of Mn-Fe/TiO2 catalyst [J]. Chemical Industry and Environmental Protection, 2014, 34(4): 380-384(in Chinese). doi: 10.3969/j.issn.1006-1878.2014.04.017
[26] NAING H H, WANG K, TUN P P, et al. Enhanced broad spectrum (vis-NIR) responsive photocatalytic performance of Ag2O/rectorite nanoarchitectures [J]. Applied Surface Science, 2019, 491: 216-224. doi: 10.1016/j.apsusc.2019.06.079
[27] ZANG S M, ZHANG G Z, QIU W G, et al. Resistance to SO2 poisoning of V2O5/TiO2-PILC catalyst for the selective catalytic reduction of NO by NH3 [J]. Chinese Journal of Catalysis, 2016, 37(6): 888-897. doi: 10.1016/S1872-2067(15)61083-X
[28] WANG X, ZHOU J, JIANG C J, et al, Precursor and dispersion effects of active species on the activity of Mn-Ce-Ti catalysts for NO abatement[J]. Korean Journal of Chemical Engineering, 2019, 36(12): 1991-1999.
[29] WANG L, LI W, SCHMIEG S J, et al. Role of Brønsted acidity in NH3 selective catalytic reduction reaction on Cu/SAPO-34 catalysts [J]. Journal of Catalysis, 2015, 324: 98-106. doi: 10.1016/j.jcat.2015.01.011
[30] ZUO J, CHEN Z, WANG F, et al. Low-temperature selective catalytic reduction of NOx with NH3 over novel Mn-Zr mixed oxide catalysts [J]. Industrial & Engineering Chemistry Research, 2014, 53(7): 2647-2655.
[31] HU X N, HUANG L, ZHANG J P, et al. Facile and template-free fabrication of mesoporous 3D nanospheres-like MnxCo3-xO4 as highly effective catalysts for low temperature SCR of NOx with NH3 [J]. Journal of Materials Chemistry A, 2018, 6(7): 1925-2963. doi: 10.1039/c7ta08000j
[32] JIANG Y, CHENG G, YANG R, et al. Influence of preparation temperature and acid treatment on the catalytic activity of MnO2 [J]. Journal of Solid State Chemistry, 2019, 272: 173-181. doi: 10.1016/j.jssc.2019.01.031
[33] YANG Q, LI W, CHEN Z H, et al. Ceria modified FeMnOx-enhanced performance and sulphur resistance for low-temperature SCR of NOx [J]. Applied Catalysis B:Environmental, 2017, 206: 203-215. doi: 10.1016/j.apcatb.2017.01.019
[34] GU S, GUI K, REN D, et al. The effects of manganese precursors on NO catalytic removal with MnOx/SiO2 catalyst at low temperature [J]. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130(1): 195-215. doi: 10.1007/s11144-020-01772-1
[35] SUN P, HUANG S X, GUO R P, et al. The enhanced SCR performance and SO2 resistance of Mn/TiO2 catalyst by the modification with Nb: A mechanistic study [J]. Applied Surface Science, 2018, 447: 479-488. doi: 10.1016/j.apsusc.2018.03.245
[36] QI K, XIE J L, ZHANG Z, et al. Facile large-scale synthesis of Ce-Mn composites by redox-precipitation and its superior low-temperature performance for NO removal [J]. Powder Technology, 2018, 338: 774-782. doi: 10.1016/j.powtec.2018.07.073