[1] |
黄喜峰, 苏志诚. 黄河生态治理与开发管理研究——评《变化环境下黄河上游河道生态效应模拟研究》[J]. 人民黄河, 2020, 42(7): 167.
|
[2] |
王镇环. 加强黄河流域生态环境治理[J]. 中国人大, 2018(1): 47 − 48.
|
[3] |
LI Y X, WANG Y, RUI X, et al. Sources of atmospheric pollution: A bibliometric analysis[J]. Scientometrics, 2017, 112(2): 1025 − 1045. doi: 10.1007/s11192-017-2421-z
|
[4] |
安显金, 李维. 基于CNKI的我国生物炭研究趋势文献计量学分析[J]. 农业环境与发展, 2018, 35(6): 483 − 491.
|
[5] |
张胤杰, 赵越, 孙宏亮, 等. 基于知识图谱的河流面源污染国际研究与前沿分析 [C]//中国环境科学学会环境工程分会. 2019年科学技术年会——环境工程技术创新与应用分论坛论文集(四). 西安: 2019.
|
[6] |
何思笑, 张建国, 张明如. 基于知识图谱法的国内城市绿地健康效应研究进展[J]. 西南师范大学学报(自然科学版), 2021, 46(3): 152 − 163.
|
[7] |
金鑫, 郝振纯, 张金良, 等. 黄河中游分布式水沙耦合模型研究[J]. 水利水电技术, 2006(12): 11 − 15. doi: 10.3969/j.issn.1000-0860.2006.12.004
|
[8] |
SAITO Y, YANG Z, HORI K, et al. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: A review on their characteristics, evolution and sediment discharge during the Holocene[J]. Geomorphology, 2001, 41(2): 219 − 231.
|
[9] |
LIU S M, LI L W, ZHANG G, et al. Impacts of human activities on nutrient transports in the Huanghe (Yellow River) estuary[J]. Journal of Hydrology, 2012, 430-431: 103 − 110. doi: 10.1016/j.jhydrol.2012.02.005
|
[10] |
LIU J, SAITO Y, KONG X H, et al. Sedimentary record of environmental evolution off the Yangtze River estuary, East China Sea, during the last 13, 000 years, with special reference to the influence of the Yellow River on the Yangtze River delta during the last 600 years[J]. Quaternary Science Reviews, 2010, 29(17-18): 2424 − 2438. doi: 10.1016/j.quascirev.2010.06.016
|
[11] |
ZHAO G, MU X, WEN Z, et al. Soil erosion, conservation, and eco-environment changes in the loess plateau of china[J]. Land Degradation & Development, 2013, 24(5): 499 − 510.
|
[12] |
FU G B, CHEN S L, LIU C M, et al. Hydro-climatic trends of the Yellow River basin for the last 50 years[J]. Climatic Change, 2004, 65(1): 149 − 178.
|
[13] |
ZHAO M M, CHEN Y, XUE L, et al. Greater health risk in wet season than in dry season in the Yellow River of the Lanzhou region[J]. Science of the Total Environment, 2018, 644(10): 873 − 883.
|
[14] |
刘正杰. 黄河流域水土保持工作的特点与经验[J]. 中国水土保持, 2001(12): 10 − 11. doi: 10.3969/j.issn.1000-0941.2001.12.005
|
[15] |
MOJIRI A, ZHOU J L, OHASHI A, et al. Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments[J]. Science of the Total Environment, 2019, 696(15): 133971.
|
[16] |
HAN D M, CURRELL M. Persistent organic pollutants in China's surface water systems[J]. Science of the Total Environment, 2017, 580(15): 602 − 625.
|
[17] |
HAN J, LIANG Y S, ZHAO B, et al. Polycyclic aromatic hydrocarbon (PAHs) geographical distribution in China and their source, risk assessment analysis[J]. Environmental Pollution, 2019, 251: 312 − 327. doi: 10.1016/j.envpol.2019.05.022
|
[18] |
习近平. 在黄河流域生态保护和高质量发展座谈会上的讲话[J]. 中国水利, 2019(20): 1 − 3. doi: 10.3969/j.issn.1000-1123.2019.20.006
|
[19] |
肖风劲, 徐雨晴, 黄大鹏, 等. 气候变化对黄河流域生态安全影响及适应对策[J]. 人民黄河, 2021, 43(1): 10 − 14+52. doi: 10.3969/j.issn.1000-1379.2021.01.003
|
[20] |
黄建平, 张国龙, 于海鹏, 等. 黄河流域近40年气候变化的时空特征[J]. 水利学报, 2020, 51(9): 1048 − 1058.
|
[21] |
张镭, 黄建平, 梁捷宁, 等. 气候变化对黄河流域的影响及应对措施[J]. 科技导报, 2020, 38(17): 42 − 51. doi: 10.3981/j.issn.1000-7857.2020.17.004
|
[22] |
ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772 − 6782.
|
[23] |
ZHOU L J, YING G G, ZHAO J L, et al. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China[J]. Environmental Pollution, 2011, 159(7): 1877 − 1885. doi: 10.1016/j.envpol.2011.03.034
|
[24] |
LI W L, MA W L, JIA H L, et al. Polybrominated diphenyl ethers (PBDEs) in surface soils across five Asian countries: Levels, spatial distribution, and source contribution[J]. Environmental Science & Technology, 2016, 50(23): 12779 − 12788.
|
[25] |
CHRISTOPH, K, BERND S. Degradation of brominated polymeric flame retardants and effects of generated decomposition products.[J]. Chemosphere, 2019, 227: 329 − 333. doi: 10.1016/j.chemosphere.2019.04.052
|
[26] |
PEI J, YAO H, WANG H, et al. Polybrominated diphenyl ethers (PBDEs) in water, surface sediment, and suspended particulate matter from the Yellow River, China: Levels, spatial and seasonal distribution, and source contribution[J]. Marine Pollution Bulletin, 2018, 129(1): 106 − 113. doi: 10.1016/j.marpolbul.2018.02.017
|
[27] |
高吉喜, 李政海. 黄河三角洲生态保护面临的问题与建议[C]// 中国水利学会、黄河研究会. 黄河河口问题及治理对策研讨会专家论坛文集. 中国水利学会、黄河研究会: 中国水利学会, 2003: 60-66.
|
[28] |
WANG S, FU B J, PIAO S L, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2016, 9: 38 − 41. doi: 10.1038/ngeo2602
|
[29] |
XIE C J, CUI B S, XIE T, et al. Hydrological connectivity dynamics of tidal flat systems impacted by severe reclamation in the Yellow River Delta[J]. Science of the Total Environment, 2020, 739(15): 139860.
|
[30] |
ZHANG X Q, WANG L K, FU X S, et al. Ecological vulnerability assessment based on PSSR in Yellow River Delta[J]. Journal of Cleaner Production, 2017, 167(20): 1106 − 1111.
|
[31] |
WU X, WANG H J, BI N S, et al. Evolution of a tide-dominated abandoned channel: A case of the abandoned Qingshuigou course, Yellow River[J]. Marine Geology, 2020, 422: 106116. doi: 10.1016/j.margeo.2020.106116
|
[32] |
ZHI L H, LI X W, BAI J H, et al. Integrating ecological and socioeconomic networks using nitrogen metabolism in the Yellow River Delta, China[J]. Resources Conservation and Recycling, 2020, 162: 105012. doi: 10.1016/j.resconrec.2020.105012
|