-
黄河是中华民族的发源地,中华文明的孕育者[1]。习近平总书记指出,“保护黄河是事关中华民族伟大复兴和永续发展的千秋大计”。黄河流域环境稳定向好发展事关中华民族伟大复兴,保护黄河生态环境为基本国策[2]。目前有关黄河流域环境领域的研究多以文献综述为主,但文献综述存在可视化程度低、时间跨度短和覆盖范围小等问题,难以准确把握所研究领域知识网络。因此,为弥补传统文献综述局限性,明确黄河流域环境方向研究进展,本文采用文献计量学的方法进行文献分析,以达到全面直观了解该领域研究脉络及热点动态的目的,以期为黄河流域环境研究和污染防控提供数据参考,为《黄河流域生态环境保护规划》提供理论依据,配合黄河保护法立法工作。
文献计量学集数学、统计学和文献学为一体,可客观反映研究领域发展特点[3]。2004年,美国德雷塞尔大学英籍华裔陈超美教授基于Java环境,开发Citespace可视化分析软件。该软件可对科学研究的发展规律和分布情况准确全面地可视化描述,目前将此类方法分析所得可视化图形称为“科学知识图谱”[4]。张胤杰等[5]利用Citespace软件对Web of Science文献检索平台中检索数据进行处理,探明该领域研究演变发展,明晰当前研究进展和热点前沿并提出未来研究方向;何思笑等[6]运用CiteSpace软件对我国城市绿地健康效应相关研究进行分析。然而遗憾的是目前运用 Citespace可视化分析软件探讨黄河流域环境领域的研究尚未报道,且基于文献及发文量调查,2001年前该领域研究较为零星松散,研究价值较低,2001~2020年黄河流域环境领域急速发展,形成较为完整理论体系,故本研究利用Citespace软件对Web of Science核心数据库中2001~2020年黄河流域环境方向研究论文与综述进行可视化分析,全面分析该领域研究热点及趋势,旨在为为黄河流域污染治理提供数据参考。
基于知识图谱的黄河流域环境研究进展分析
Development of environmental research of Yewllow River by bibliometrics analysis
-
摘要: 黄河流域环境领域研究众多,以文献综述为主的文献分析存在可视化程度低、时间跨度短和覆盖范围小等问题。针对文献综述局限性,以明确黄河流域环境方向研究进展为目的,采用文献计量学的方法,以Web of Science核心数据库中2001~2020年黄河流域环境方向研究论文与综述进行科学计量审查,利用Citespace软件进行可视化分析。研究表明:黄河流域环境研究关注度逐步提高但体系化较为薄弱,各研究团队合作尚且不足;研究热点主要集中于黄河流域环境污染修复等方向;经分析预测未来该领域将以新型污染物、三角洲生态系统、多学科联合为主要研究趋势。本文通过明晰该领域研究热点及趋势,以期为黄河流域环境研究和污染防控提供数据参考,为《黄河流域生态环境保护规划》提供理论依据,推动黄河流域环境领域高质量发展,配合黄河保护法立法工作。Abstract: There are many types of researches in the environmental field about the Yellow River Basin. However, there are several problems in the present literature review, such as the low visualization, the short period, and a small coverage of the literatures, etc. Considering the limitations and in order to clarify the environmental research progress of the Yellow River, this study searches the WOS Core Collection database from 2001 to 2020, uses Citespace software to realize the function of visible analysis, clarifies the research hotspots and trends in this field and provides the basic data for environmental research and pollution prevention in the Yellow River Basin. The research shows a gradually increased attention of the environmental research in the Yellow River Basin with a relatively poor systematization. In addition, the cooperation of various research teams is still insufficient. The research hotspots are mainly concentrated in the environmental pollution restoration in the Yellow River Basin. It is predicted that the new pollutants and delta ecosystems as well as the multidisciplinary cooperation will be the main research trends in the future. By clarifying the research hotspots and trends in this field, this paper aims to provide a reference for the environmental research and pollution prevention and control in the Yellow River Basin, also provide a theoretical basis for “Yellow River Basin Ecological Environment Protection Plan”, thus promoting the high-quality development of the environmental field in the Yellow River Basin, and cooperating with the legislative work of the Yellow River Protection Law.
-
Key words:
- Yellow River's environment /
- Citespace /
- bibliometrics method /
- knowledge map /
- frontier hotspots
-
表 1 2001~2020年黄河环境领域发文量前10的国家
排名 国家 频数 百分比/% 1 中国 734 91.98 2 美国 102 12.78 3 日本 29 3.63 4 英国 27 3.38 5 澳大利亚 24 3.00 6 德国 16 2.00 7 荷兰 16 2.00 8 加拿大 13 1.63 9 印度 8 1.00 10 意大利 8 1.00 -
[1] 黄喜峰, 苏志诚. 黄河生态治理与开发管理研究——评《变化环境下黄河上游河道生态效应模拟研究》[J]. 人民黄河, 2020, 42(7): 167. [2] 王镇环. 加强黄河流域生态环境治理[J]. 中国人大, 2018(1): 47 − 48. [3] LI Y X, WANG Y, RUI X, et al. Sources of atmospheric pollution: A bibliometric analysis[J]. Scientometrics, 2017, 112(2): 1025 − 1045. doi: 10.1007/s11192-017-2421-z [4] 安显金, 李维. 基于CNKI的我国生物炭研究趋势文献计量学分析[J]. 农业环境与发展, 2018, 35(6): 483 − 491. [5] 张胤杰, 赵越, 孙宏亮, 等. 基于知识图谱的河流面源污染国际研究与前沿分析 [C]//中国环境科学学会环境工程分会. 2019年科学技术年会——环境工程技术创新与应用分论坛论文集(四). 西安: 2019. [6] 何思笑, 张建国, 张明如. 基于知识图谱法的国内城市绿地健康效应研究进展[J]. 西南师范大学学报(自然科学版), 2021, 46(3): 152 − 163. [7] 金鑫, 郝振纯, 张金良, 等. 黄河中游分布式水沙耦合模型研究[J]. 水利水电技术, 2006(12): 11 − 15. doi: 10.3969/j.issn.1000-0860.2006.12.004 [8] SAITO Y, YANG Z, HORI K, et al. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: A review on their characteristics, evolution and sediment discharge during the Holocene[J]. Geomorphology, 2001, 41(2): 219 − 231. [9] LIU S M, LI L W, ZHANG G, et al. Impacts of human activities on nutrient transports in the Huanghe (Yellow River) estuary[J]. Journal of Hydrology, 2012, 430-431: 103 − 110. doi: 10.1016/j.jhydrol.2012.02.005 [10] LIU J, SAITO Y, KONG X H, et al. Sedimentary record of environmental evolution off the Yangtze River estuary, East China Sea, during the last 13, 000 years, with special reference to the influence of the Yellow River on the Yangtze River delta during the last 600 years[J]. Quaternary Science Reviews, 2010, 29(17-18): 2424 − 2438. doi: 10.1016/j.quascirev.2010.06.016 [11] ZHAO G, MU X, WEN Z, et al. Soil erosion, conservation, and eco-environment changes in the loess plateau of china[J]. Land Degradation & Development, 2013, 24(5): 499 − 510. [12] FU G B, CHEN S L, LIU C M, et al. Hydro-climatic trends of the Yellow River basin for the last 50 years[J]. Climatic Change, 2004, 65(1): 149 − 178. [13] ZHAO M M, CHEN Y, XUE L, et al. Greater health risk in wet season than in dry season in the Yellow River of the Lanzhou region[J]. Science of the Total Environment, 2018, 644(10): 873 − 883. [14] 刘正杰. 黄河流域水土保持工作的特点与经验[J]. 中国水土保持, 2001(12): 10 − 11. doi: 10.3969/j.issn.1000-0941.2001.12.005 [15] MOJIRI A, ZHOU J L, OHASHI A, et al. Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments[J]. Science of the Total Environment, 2019, 696(15): 133971. [16] HAN D M, CURRELL M. Persistent organic pollutants in China's surface water systems[J]. Science of the Total Environment, 2017, 580(15): 602 − 625. [17] HAN J, LIANG Y S, ZHAO B, et al. Polycyclic aromatic hydrocarbon (PAHs) geographical distribution in China and their source, risk assessment analysis[J]. Environmental Pollution, 2019, 251: 312 − 327. doi: 10.1016/j.envpol.2019.05.022 [18] 习近平. 在黄河流域生态保护和高质量发展座谈会上的讲话[J]. 中国水利, 2019(20): 1 − 3. doi: 10.3969/j.issn.1000-1123.2019.20.006 [19] 肖风劲, 徐雨晴, 黄大鹏, 等. 气候变化对黄河流域生态安全影响及适应对策[J]. 人民黄河, 2021, 43(1): 10 − 14+52. doi: 10.3969/j.issn.1000-1379.2021.01.003 [20] 黄建平, 张国龙, 于海鹏, 等. 黄河流域近40年气候变化的时空特征[J]. 水利学报, 2020, 51(9): 1048 − 1058. [21] 张镭, 黄建平, 梁捷宁, 等. 气候变化对黄河流域的影响及应对措施[J]. 科技导报, 2020, 38(17): 42 − 51. doi: 10.3981/j.issn.1000-7857.2020.17.004 [22] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772 − 6782. [23] ZHOU L J, YING G G, ZHAO J L, et al. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China[J]. Environmental Pollution, 2011, 159(7): 1877 − 1885. doi: 10.1016/j.envpol.2011.03.034 [24] LI W L, MA W L, JIA H L, et al. Polybrominated diphenyl ethers (PBDEs) in surface soils across five Asian countries: Levels, spatial distribution, and source contribution[J]. Environmental Science & Technology, 2016, 50(23): 12779 − 12788. [25] CHRISTOPH, K, BERND S. Degradation of brominated polymeric flame retardants and effects of generated decomposition products.[J]. Chemosphere, 2019, 227: 329 − 333. doi: 10.1016/j.chemosphere.2019.04.052 [26] PEI J, YAO H, WANG H, et al. Polybrominated diphenyl ethers (PBDEs) in water, surface sediment, and suspended particulate matter from the Yellow River, China: Levels, spatial and seasonal distribution, and source contribution[J]. Marine Pollution Bulletin, 2018, 129(1): 106 − 113. doi: 10.1016/j.marpolbul.2018.02.017 [27] 高吉喜, 李政海. 黄河三角洲生态保护面临的问题与建议[C]// 中国水利学会、黄河研究会. 黄河河口问题及治理对策研讨会专家论坛文集. 中国水利学会、黄河研究会: 中国水利学会, 2003: 60-66. [28] WANG S, FU B J, PIAO S L, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2016, 9: 38 − 41. doi: 10.1038/ngeo2602 [29] XIE C J, CUI B S, XIE T, et al. Hydrological connectivity dynamics of tidal flat systems impacted by severe reclamation in the Yellow River Delta[J]. Science of the Total Environment, 2020, 739(15): 139860. [30] ZHANG X Q, WANG L K, FU X S, et al. Ecological vulnerability assessment based on PSSR in Yellow River Delta[J]. Journal of Cleaner Production, 2017, 167(20): 1106 − 1111. [31] WU X, WANG H J, BI N S, et al. Evolution of a tide-dominated abandoned channel: A case of the abandoned Qingshuigou course, Yellow River[J]. Marine Geology, 2020, 422: 106116. doi: 10.1016/j.margeo.2020.106116 [32] ZHI L H, LI X W, BAI J H, et al. Integrating ecological and socioeconomic networks using nitrogen metabolism in the Yellow River Delta, China[J]. Resources Conservation and Recycling, 2020, 162: 105012. doi: 10.1016/j.resconrec.2020.105012