[1] |
卢信, 冯紫艳, 商景阁, 等. 不同有机基质诱发的水体黑臭及主要致臭物(VOSCs)产生机制研究[J]. 环境科学, 2012, 33(9): 3152-3159.
|
[2] |
王兵, 王丹, 李永涛, 等. 基于单质硫回收的高含硫废水氧化[J]. 环境工程学报, 2015, 9(11): 5408-5414. doi: 10.12030/j.cjee.20151144
|
[3] |
杨德敏, 袁建梅, 谢崇文, 等. 气田高浓度含硫废水的化学氧化处理[J]. 环境工程学报, 2014, 8(11): 4757-4761.
|
[4] |
龚文莉. 浅析制革工业废水处理的技术现状[J]. 广东化工, 2012, 39(2): 136-141. doi: 10.3969/j.issn.1007-1865.2012.02.072
|
[5] |
魏世林. 制革废水中的硫化物对环境的污染及其治理方法[J]. 中国皮革, 2003, 32(1): 3-5. doi: 10.3969/j.issn.1001-6813.2003.01.002
|
[6] |
DINH V N, DINH B N, THI M T, et al. The oxidation of sulfur-containing compounds using heterogeneous catalysts of transition metal oxides deposited on the polymeric matrix[J]. Journal of Electronic Materials, 2015, 45(5): 2316-2321.
|
[7] |
苏帝翰, 王春华, 周加境, 等. 氧化锰/AT复合吸附材料去除废水中硫化物的研[J]. 中国皮革, 2013, 42(23): 24-28.
|
[8] |
林奇, 樊欣蕊, 邹丽蓉. 含硫废水处理技术的研究进展[J]. 油气田环境保护, 2020, 30(5): 27-30. doi: 10.3969/j.issn.1005-3158.2020.05.007
|
[9] |
罗瑶, 李珊, 谭文峰, 等. 水锰矿氧化水溶性硫化物过程及其影响因素[J]. 环境科学, 2016, 37(4): 1539-1545.
|
[10] |
郭二亮, 崔雯谣, 吴迪, 等. MnO2/γ-Al2O3的制备及催化空气氧化处理制革含硫废水[J]. 中国皮革, 2019, 48(2): 36-42.
|
[11] |
NHI B D, MARATOVICH A R, GARIPOVN A A, et al. Investigation of factors influencing sodium sulfide oxidation in the presence of polymeric heterogeneous catalysts of transition metal oxides[J]. Journal of Sulfur Chemistry, 2013, 35(1): 74-85.
|
[12] |
LIAO X, HU Z, MA L, et al. Cu location onto spherical SiO2@Mn make a profound difference for catalytic oxidative removal Na2S in waste water with air as an oxidant at ambient conditions[J]. Chemical Engineering Journal, 2018, 351: 280-294. doi: 10.1016/j.cej.2018.06.079
|
[13] |
王瑀婷. 制革污水处理方法研究进展[J]. 当代化工研究, 2017, 5(1): 58-59. doi: 10.3969/j.issn.1672-8114.2017.01.031
|
[14] |
SUN F, LIU J, CHEN H, et al. Nitrogen-rich mesoporous carbons: Highly efficient, regenerable metal-free catalysts for low-temperature oxidation of H2S[J]. ACS Catalysis, 2013, 3(5): 862-870. doi: 10.1021/cs300791j
|
[15] |
YANG C, YE H F, BYUN J, et al. N-rich carbon catalysts with economic feasibility for the selective oxidation of hydrogen sulfide to sulfur[J]. Environmental Science & Technology, 2020, 54(19): 12621-12630.
|
[16] |
LI S Y, GU Q Q, CAO N, et al. Defect enriched N-doped carbon nanoflakes as robust carbocatalysts for H2S selective oxidation[J]. Journal of Materials Chemistry A, 2020, 8(18): 8892-8902. doi: 10.1039/D0TA00212G
|
[17] |
XIONG W, WANG Z N, HE S L, et al. Nitrogen-doped carbon nanotubes as a highly active metal-free catalyst for nitrobenzene hydrogenation[J]. Applied Catalysis B:Environmental, 2020, 260: 118105. doi: 10.1016/j.apcatb.2019.118105
|
[18] |
CHEN Q J, WANG Z, LONG D H, et al. Role of pore structure of activated carbon fibers in the catalytic oxidation of H2S[J]. Industrial & Engineering Chemistry Research, 2010, 49(7): 3152-3159.
|
[19] |
LIU Y F, DUONG-VIET C, LUO J J, et al. One-pot synthesis of a nitrogen-doped carbon composite by electrospinning as a metal-free catalyst for oxidation of H2S to sulfur[J]. Chemcatchem, 2015, 7(18): 2957-2964. doi: 10.1002/cctc.201500353
|
[20] |
ZANG Z X, WANG J T, LI W C, et al. Millimeter-sized mesoporous carbon spheres for highly efficient catalytic oxidation of hydrogen sulfide at room temperature[J]. Carbon, 2016, 96: 608-615. doi: 10.1016/j.carbon.2015.10.001
|
[21] |
BA H, LIU Y F, LAI T P, et al. A highly N-doped carbon phase "dressing'' of macroscopic supports for catalytic applications[J]. Chemical Communications, 2015, 51(76): 14393-14396. doi: 10.1039/C5CC05259A
|
[22] |
DUONG-VIET C, BA H, EL-BERRICHI Z, et al. Silicon carbide foam as a porous support platform for catalytic applications[J]. New Journal of Chemistry, 2016, 40(5): 4285-4299. doi: 10.1039/C5NJ02847G
|
[23] |
WANG S M, SHANG J Y, WANG Q G, et al. Enhanced electrochemical performance by strongly anchoring highly crystalline polyaniline on multiwalled carbon nanotubes[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 43939-43949.
|
[24] |
LIU J N, JIA Q H, LONG J L, et al. Amorphous NiO as co-catalyst for enhanced visible-light-driven hydrogen generation over g-C3N4 photocatalyst[J]. Applied Catalysis B:Environmental, 2018, 222: 35-43. doi: 10.1016/j.apcatb.2017.09.073
|
[25] |
FENG L, YUAN G, XIAO L, et al. Biochar Modified by nano-manganese dioxide as adsorbent and oxidant for oxytetracycline[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(2): 269-275. doi: 10.1007/s00128-020-02813-0
|
[26] |
WANG J W, YUAN Y F, ZHNG D, et al. Constructing metal-organic framework-derived Mn2O3 multishelled hollow nanospheres for high-performance cathode of aqueous zinc-ion batteries[J]. Nanotechnology, 2021, 32(43): 435401. doi: 10.1088/1361-6528/ac15cb
|
[27] |
DINH V C, PO-CHANG W, LO-I C, CHIA-HUNG H, et al. Active MnO2/biochar composite for efficient As(III) removal: Insight into the mechanisms of redox transformation and adsorption[J]. Water Research, 2021, 188: 116495. doi: 10.1016/j.watres.2020.116495
|
[28] |
ZHENG X, L Y, ZHNG Y, et al. Highly efficient porous FexCe1–xO2−δ with three-dimensional hierarchical nanoflower morphology for H2S-Selective oxidation[J]. ACS Catalysis, 2020, 10(7): 3968-3983. doi: 10.1021/acscatal.9b05486
|
[29] |
NHI B D, MARATOVICH A R, GARIPOVNA A A, et al. Investigation of factors influencing sodium sulfide oxidation in the presence of polymeric heterogeneous catalysts of transition metal oxides[J]. Journal of Sulfur Chemistry, 2014, 35(1): 74-85. doi: 10.1080/17415993.2013.800062
|
[30] |
左宋林, 刘斌. 活性炭深度脱除硫化氢的研究进展[J]. 林业工程学报, 2021, 6: 1-12.
|
[31] |
GAO T, SHI Y, LIU F, et al. Oxidation process of dissolvable sulfide by synthesized todorokite in aqueous systems[J]. Journal of Hazardous Materials, 2015, 290: 106-116. doi: 10.1016/j.jhazmat.2015.02.018
|
[32] |
LI M Y, FU K, WANG Z X, et al. Enhanced adsorption of polysulfides on carbon nanotubes/boron nitride fibers for high-performance lithium-sulfur batteries[J]. Chemistry:A European Journal, 2020, 26(72): 17567-17573. doi: 10.1002/chem.202003807
|