[1] |
赵志瑞, 马斌, 张树军, 等. 高氨氮废水与城市生活污水短程硝化系统菌群比较[J]. 环境科学, 2013, 34(4): 1448-1456.
|
[2] |
闫家望. 高氨氮废水处理技术及研究现状[J]. 中国资源综合利用, 2018, 36(3): 99-101. doi: 10.3969/j.issn.1008-9500.2018.03.035
|
[3] |
陈重军, 王建芳, 张海芹, 等. 厌氧氨氧化污水处理工艺及其实际应用研究进展[J]. 生态环境学报, 2014, 23(3): 521-527. doi: 10.3969/j.issn.1674-5906.2014.03.023
|
[4] |
徐峥勇. 基于亚硝化、厌氧氨氧化与反硝化的脱氮耦合工艺及其控制策略研究[D]. 长沙: 湖南大学, 2011.
|
[5] |
LI X, LU M Y, HUANG Y, et al. Influence of seasonal temperature change on autotrophic nitrogen removal for mature landfill leachate treatment with high-ammonia by partial nitrification-Anammox process[J]. Journal of Environmental Sciences, 2021, 102: 291-300. doi: 10.1016/j.jes.2020.09.031
|
[6] |
CHEN G, LI J, DENG H, et al. Study on Anaerobic ammonium oxidation (Anammox) sludge immobilized in different gel carriers and its nitrogen removal performance[J]. Journal of Residuals Science & Technology, 2015, 12: S47-S54.
|
[7] |
WANG J X, LIANG J D, SUN L, et al. Granule-based immobilization and activity enhancement of anammox biomass via PVA/CS and PVA/CS/Fe gel beads[J]. Bioresource Technology, 2020, 309: 123448. doi: 10.1016/j.biortech.2020.123448
|
[8] |
贾方旭, 彭永臻, 杨庆. 厌氧氨氧化菌与其他细菌之间的协同竞争关系[J]. 环境科学学报, 2014, 34(6): 1351-1361.
|
[9] |
VAN DER STAR W R L, ABMA W R, BLOMMERS D, et al. Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam[J]. Water Research, 2007, 41(18): 4149-4163. doi: 10.1016/j.watres.2007.03.044
|
[10] |
HU B L, ZHENG P, TANG C J, et al. Identification and quantification of anammox bacteria in eight nitrogen removal reactors[J]. Water Research, 2010, 44(17): 5014-5020. doi: 10.1016/j.watres.2010.07.021
|
[11] |
BI Z, QIAO S, ZHOU J T, et al. Fast start-up of Anammox process with appropriate ferrous iron concentration[J]. Bioresource Technology, 2014, 170: 506-512. doi: 10.1016/j.biortech.2014.07.106
|
[12] |
WANG T, ZHANG H M, YANG F L, et al. Start-up of the anammox process from the conventional activated sludge in a membrane bioreactor[J]. Bioresource Technology, 2009, 100: 2501-2506. doi: 10.1016/j.biortech.2008.12.011
|
[13] |
CHEN H, HU H Y, CHEN Q Q, et al. Successful start-up of the anammox process: Influence of the seeding strategy on performance and granule properties[J]. Bioresource Technology, 2016, 211: 594-602. doi: 10.1016/j.biortech.2016.03.139
|
[14] |
王晓霞. ASBR反应器内厌氧氨氧化的快速启动及其脱氮性能研究[D]. 青岛: 青岛大学, 2012.
|
[15] |
PHAN T N, TRUONG T T V, Ha N B, et al. High rate nitrogen removal by ANAMMOX internal circulation reactor (IC) for old landfill leachate treatment[J]. Bioresource Technology, 2017, 234: 281-288. doi: 10.1016/j.biortech.2017.02.117
|
[16] |
WANG S H, Guo J B, LIAN J, et al. Rapid start-up of the anammox process by denitrifying granular sludge and the mechanism of the anammox electron transport chain[J]. Biochemical Engineering Journal, 2016, 115: 101-107. doi: 10.1016/j.bej.2016.09.001
|
[17] |
王朝朝, 冀颖, 闫立娜, 等. 厌氧氨氧化颗粒污泥UASB反应器的快速启动[J]. 中国给水排水, 2019, 35(11): 15-20.
|
[18] |
许冬冬, 康达, 郭磊艳, 等. 厌氧氨氧化颗粒污泥研究进展[J]. 微生物学通报, 2019, 46(8): 1988-1997.
|
[19] |
ZHANG Y L, HE S L, NIU Q G, et al. Characterization of three types of inhibition and their recovery processes in an anammox UASB reactor[J]. Biochemical Engineering Journal, 2016, 109: 212-221. doi: 10.1016/j.bej.2016.01.022
|
[20] |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
[21] |
PARK, S, BAE, W. Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid[J]. Process Biochemistry, 2009, 44(6): 631-640. doi: 10.1016/j.procbio.2009.02.002
|
[22] |
XU L Z J, ZHANG Q, FU J J, et al. Deciphering the microbial community and functional genes response of anammox sludge to sulfide stress[J]. Bioresource Technology, 2020, 302: 122885. doi: 10.1016/j.biortech.2020.122885
|
[23] |
李媛. 厌氧氨氧化工艺启动和运行特性及其受抑机理研究[D]. 无锡: 江南大学, 2014.
|
[24] |
STROUS M, KUENEN J G, JETTEN M S M. Key physiol-ogy of anaerobic ammonium oxidation[J]. Applied and Environmental Microbiology, 1999, 65(7): 3248-3250. doi: 10.1128/AEM.65.7.3248-3250.1999
|
[25] |
STROUS M, HEIJNEN J J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589-596. doi: 10.1007/s002530051340
|
[26] |
HYOKWAN B, MINKYU C, CHANGSOO L, et al. Enrichment of ANAMMOX bacteria from conventional activated sludge entrapped in poly(vinyl alcohol)/sodium alginate gel[J]. Chemical Engineering Journal, 2015, 281: 531-540. doi: 10.1016/j.cej.2015.06.111
|
[27] |
ZHANG Z, LIU S. Insight into the overconsumption of ammonium by anammox consortia under anaerobic conditions[J]. Journal of Apply Microbiology, 2014, 117(6): 1830-1838. doi: 10.1111/jam.12649
|
[28] |
NIU Q G, HE S L, ZHANG Y L, et al. Process stability and the recovery control associated with inhibition factors in a UASB-anammox reactor with a long-term operation[J]. Bioresource Technology, 2016: 132-141.
|
[29] |
FAHRBACH M, KUEVER J, MEINKE R, et al. Denitratisoma oestradiolicum gen. nov., sp. nov., a 17b-oestradiol-degrading, denitrifying betaproteobacterium[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56: 1547-1552. doi: 10.1099/ijs.0.63672-0
|
[30] |
ZHANG Q, WU J, YE Y Y, et al. Microbial and genetic responses of anammox process to the successive exposure of different antibiotics[J]. Chemical Engineering Journal, 2020: 127576.
|
[31] |
ZHOU S, ZHANG Z, SUN Z L, et al. Responses of simultaneous anammox and denitrification (SAD) process to nitrogen loading variation: Start-up, performance, sludge morphology and microbial community dynamics[J]. Science of the Total Environment, 2021, 795: 148911. doi: 10.1016/j.scitotenv.2021.148911
|
[32] |
XIA Y, WANG Y, WANG Y, et al. Cellular adhesiveness and cellulolytic capacity in Anaerolineae revealed by omics-based genome interpretation[J]. Biotechnology Biofuels, 2016, 9: 111. doi: 10.1186/s13068-016-0524-z
|