[1] |
ESTEVEZ E, CABERA M D, FERNÁNDEZ-VERA J R, et al. Monitoring priority substances, other organic contaminants and heavy metals in a volcanic aquifer from different sources and hydrological processes [J]. Science of The Total Environment, 2016, 551/552: 186-196. doi: 10.1016/j.scitotenv.2016.01.177
|
[2] |
SCHNOOR B, ELHENDAWY A, JOSEPH S, et al. Engineering atrazine loaded poly (lactic-co-glycolic acid) nanoparticles to ameliorate environmental challenges [J]. Journal of Agricultural and Food Chemistry, 2018, 66(30): 7889-7898. doi: 10.1021/acs.jafc.8b01911
|
[3] |
TANG H, DAI Z, XIE X, et al. Promotion of peroxydisulfate activation over Cu0.84Bi2.08O4 for visible light induced photodegradation of ciprofloxacin in water matrix [J]. Chemical Engineering Journal, 2019, 356: 472-482. doi: 10.1016/j.cej.2018.09.066
|
[4] |
BEAN B W, PICCINNI G, SALISBURY C D. Wheat cultivar tolerance to atrazine [J]. Journal of Production Agriculture, 1999, 12(4): 597-600. doi: 10.2134/jpa1999.0597
|
[5] |
SINGH S, KUMAR V, CHAUHAN A, et al. Toxicity, degradation and analysis of the herbicide atrazine [J]. Environmental Chemistry Letters, 2018, 16(1): 211-237. doi: 10.1007/s10311-017-0665-8
|
[6] |
SOLOMON K R, BAKER D B, RICHARDS R P, et al. Ecological risk assessment of atrazine in North American surface water [J]. Environmental Toxicology and Chemistry, 1996, 15(1): 31-74. doi: 10.1002/etc.5620150105
|
[7] |
COMBER S D W. Abiotic persistence of atrazine and simazine in water [J]. Pesticide Science, 1999, 55(7): 696-702. doi: 10.1002/(SICI)1096-9063(199907)55:7<696::AID-PS11>3.0.CO;2-7
|
[8] |
HAYES T, HASTON K, TSUI M, et al. Herbicides: Feminization of male frogs in the wild [J]. Nature, 2002, 419(6910): 895-896. doi: 10.1038/419895a
|
[9] |
FAN W, YANASE T, MORINAGA H, et al. Atrazine-induced aromatase expression is SF-1 dependent: Implications for endocrine disruption in wildlife and reproductive cancers in humans [J]. Environmental Health Perspectives, 2007, 115(5): 720-727. doi: 10.1289/ehp.9758
|
[10] |
范润珍, 钱传范, 卢向阳. 敌克松解除莠去津对水稻药害的使用技术研究 [J]. 农药, 1999, 38(5): 21-23.
FAN R Z, QIAN C F, LU X Y. Study on the elimination of the phytotoxicity of atrazine to rice using fenaminosulf [J]. Agrochemicals, 1999, 38(5): 21-23(in Chinese).
|
[11] |
郝文波, 李丽春, 韩云, 等. 6种长效除草剂土壤残留致烟草药害症状及其致害临界值 [J]. 广东农业科学, 2013, 9: 80-82. doi: 10.3969/j.issn.1004-874X.2013.10.024
HAO W B, LI L C, HAN Y, et al. Study of critical concentration and symptoms in tobacco phytotoxicity caused by six soil residual herbicides [J]. Guangdong Agricultural Sciences, 2013, 9: 80-82(in Chinese). doi: 10.3969/j.issn.1004-874X.2013.10.024
|
[12] |
YAN X M, SHI B Y, LU J J, et al. Adsorption and desorption of atrazine on carbon nanotubes [J]. Journal of Colloid and Interface Science, 2008, 321(1): 30-38. doi: 10.1016/j.jcis.2008.01.047
|
[13] |
BORUAH P, SHARMA B, HUSSAIN N, et al. Magnetically recoverable Fe3O4/graphene nanocomposite towards efficient removal of triazine pesticides from aqueous solution: Investigation of the adsorption phenomenon and specific ion effect [J]. Chemosphere, 2017, 168: 1058-1067. doi: 10.1016/j.chemosphere.2016.10.103
|
[14] |
郑妍婕. 生物炭对莠去津在土壤中的吸附及后茬作物的影响研究[D]. 北京: 中国农业科学院, 2019.
ZHENG Y J. Effects of biochars on atrazine adsorption in soil and succession crops[D]. Beijng: Chinese Academy of Agricultural Sciences, 2019 (in Chinese).
|
[15] |
SINGH S, KUMAR V, UPADHYAY N, et al. The effects of Fe(Ⅱ), Cu(Ⅱ) and humic acid on biodegradation of atrazine [J]. Journal of Environmental Chemical Engineering, 2020, 8(2): UNSP103539. doi: 10.1016/j.jece.2019.103539
|
[16] |
SÁNCHEZ-SÁNCHEZ R, AHUATZI-CHACÓN D, GALÍNDEZ-MAYER J, et al. Removal of triazine herbicides from aqueous systems by a biofilm reactor continuously or intermittently operated [J]. Journal of Environmental Management, 2013, 128: 421-426. doi: 10.1016/j.jenvman.2013.05.050
|
[17] |
CHONG M N, JIN B, CHOW C W K, et al. Recent developments in photocatalytic water treatment technology: A review [J]. Water Research, 2010, 44(10): 2997-3027. doi: 10.1016/j.watres.2010.02.039
|
[18] |
STYLIDI M, KONDARIDES D I, VERYKIOS X E. Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions [J]. Applied Catalysis B:Environmental, 2007, 47(3): 189-201.
|
[19] |
ZHANG H, LV X J, LI Y M, et al. P25-graphene composite as a high performance photocatalyst [J]. ACS Nano, 2010, 4(1): 380-386. doi: 10.1021/nn901221k
|
[20] |
PARRA S, STANCA S E, GUASAQUILLO I, et al. Photocatalytic degradation of atrazine using suspended and supported TiO2 [J]. Applied Catalysis B:Environmental, 2004, 51(2): 107-116. doi: 10.1016/j.apcatb.2004.01.021
|
[21] |
CHATTERJEE D, MAHATA A. Evidence of superoxide radical formation in the photodegradation of pesticide on the dye modified TiO2 surface using visible light [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2004, 165(1/2/3): 19-23.
|
[22] |
FENOLL J, HELLÍN P, MARTÍNEZ C M, et al. Semiconductor-sensitized photodegradation of s-triazine and chloroacetanilide herbicides in leaching water using TiO2 and ZnO as catalyst under natural sunlight [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2012, 238(15): 81-87.
|
[23] |
MOHAGHEGH N, TASVIRI M, RAHIMI E, et al. Comparative studies on Ag3PO4/BiPO4-metal-organic framework-graphene-based nanocomposites for photocatalysis application [J]. Applied Surface Science, 2015, 351: 216-224. doi: 10.1016/j.apsusc.2015.05.135
|
[24] |
JO W K, LEE J Y, SELVAM N C S. Synthesis of MoS2 nanosheets loaded ZnO-g-C3N4 nanocomposites for enhanced photocatalytic applications [J]. Chemical Engineering Journal, 2016, 289: 306-318. doi: 10.1016/j.cej.2015.12.080
|
[25] |
WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nature Materials, 2009, 8(1): 76-80. doi: 10.1038/nmat2317
|
[26] |
JIANG W J, RUAN Q S, XIE J J, et al. Oxygen-doped carbon nitride aerogel: A self-supported photocatalyst for solar-to-chemical energy conversion [J]. Applied Catalysis B:Environmental, 2018, 236: 428-435. doi: 10.1016/j.apcatb.2018.05.050
|
[27] |
常方, 黄韬博, 陈龙, 等. 不同光波长对类石墨相氮化碳催化降解莫西沙星的机理探究 [J]. 环境化学, 2020, 39(3): 593-600. doi: 10.7524/j.issn.0254-6108.2019102206
CHANG F, HUANG T B, CHEN L, et al. Photocatalytic degradation mechanism of moxifloxacin by g-C3N4 under various light wavelengths [J]. Environmental Chemistry, 2020, 39(3): 593-600(in Chinese). doi: 10.7524/j.issn.0254-6108.2019102206
|
[28] |
谢治杰, 冯义平, 张钱新, 等. Z型MoO3/g-C3N4复合催化剂用于可见光降解萘普生的机制研究 [J]. 环境化学, 2019, 38(8): 1724-1734. doi: 10.7524/j.issn.0254-6108.2018100101
XIE Z J, FENG Y P, ZHANG Q X, et al. Photocatalytic degradation mechanism of naproxen using Z-scheme MoO3 /g-C3N4 under visiblelight irradiation [J]. Environmental Chemistry, 2019, 38(8): 1724-1734(in Chinese). doi: 10.7524/j.issn.0254-6108.2018100101
|
[29] |
NIU P, ZHANG L L, LIU G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities [J]. Advanced Functional Materials, 2012, 22(22): 4763-4770. doi: 10.1002/adfm.201200922
|
[30] |
HE N, CAO S, ZHANG L, et al. Enhanced photocatalytic disinfection of Escherichia coli K-12 by porous g-C3N4 nanosheets: Combined effect of photo-generated and intracellular ROSs [J]. Chemosphere, 2019, 235: 1116-1124. doi: 10.1016/j.chemosphere.2019.07.007
|
[31] |
GUO S E, DENG Z P, LI M X, et al. 2016. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution [J]. Angewandte Chemie-International Edition, 2016, 55: 1830-1834. doi: 10.1002/anie.201508505
|
[32] |
Albero J, Vidal A, Migani A, et al. Phosphorous-doped graphene as a metal-free material for thermochemical water reforming at unusually mild conditions [J]. ACS Sustainable Chemistry & Engineering, 2019, 7: 838-846.
|
[33] |
HOU Y, LI J, WEN Z, et al. N-doped graphene/porous g-C3N4 nanosheets supported layered-MoS2 hybrid as robust anode materials for lithium-ion batteries [J]. Nano Energy, 2014, 8: 157-164. doi: 10.1016/j.nanoen.2014.06.003
|
[34] |
TIAN J, NING R, LIU Q, et al. Three-dimensional porous supramolecular architecture from ultrathin g-C3N4 nanosheets and reduced graphene oxide: Solution self-assembly construction and application as a highly efficient metal-free electrocatalyst for oxygen reduction reaction [J]. ACS Applied Materials & Interfaces, 2014, 6(2): 1011-1017.
|
[35] |
殷婷婷, 王国宏, 韩德艳, 等. 水热法制备纳米二氧化钛的研究进展 [J]. 广州化工, 2012, 40(5): 10-12. doi: 10.3969/j.issn.1001-9677.2012.05.005
YIN T T, WANG G H, HAN D Y, et al. Research progress in hydrothermal synthesis of nano-titania [J]. Guangzhou Chemical Industry, 2012, 40(5): 10-12(in Chinese). doi: 10.3969/j.issn.1001-9677.2012.05.005
|
[36] |
LEI H, ZHANG H H, ZOU Y, et al. Synergetic photocatalysis/piezocatalysis of bismuth oxybromide for degradation of organic pollutants [J]. Journal of Alloys and Compounds, 2019, 809: UNSP151840. doi: 10.1016/j.jallcom.2019.151840
|
[37] |
PELIZZETTI E, MAURINO V, MINERO C, et al. Photocatalytic degradation of atrazine and other s-triazine herbicides [J]. Environmental Science & Technology, 1990, 24(10): 1559-1565.
|