[1] |
生态环境部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5): 1689-1692.
|
[2] |
TOUZOUT N, MEHALLAH H, MORALENT R, et al. Phytotoxic evaluation of neonicotinoid imidacloprid and cadmium alone and in combination on tomato (Solanum lycopersicum L.)[J]. Ecotoxicology, 2021, 30(6): 1126-1137.
|
[3] |
ABDEL-SHAFY H I, MANSOUR M S M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation[J]. Egyptian Journal of Petroleum, 2016, 25(1): 107-123. doi: 10.1016/j.ejpe.2015.03.011
|
[4] |
汤超, 王潇. 农用地土壤污染治理与修复技术研究[J]. 低碳世界, 2020, 10(4): 15-17. doi: 10.3969/j.issn.2095-2066.2020.04.009
|
[5] |
杨悦锁, 陈煜, 李盼盼, 等. 土壤、地下水中重金属和多环芳烃复合污染及修复研究进展[J]. 化工学报, 2017, 68(6): 2219-2232.
|
[6] |
李书鹏. 土壤与地下水修复行业2018年发展报告[R]. 中国环境保护产业协会. 北京, 2019.
|
[7] |
赵涛, 马刚平, 周宇, 等. 多环芳烃类污染土壤热脱附修复技术应用研究[J]. 环境工程, 2017, 35(11): 178-181.
|
[8] |
魏萌. 焦化污染场地土壤中PAHs的赋存特征及热脱附处置研究[D]. 北京: 首都师范大学, 2013.
|
[9] |
BONNARD M, DEVIN S, LEYVAL C, et al. The influence of thermal desorption on genotoxicity of multipolluted soil[J]. Ecotoxicology and Environmental Safety, 2010, 73(5): 955-960. doi: 10.1016/j.ecoenv.2010.02.023
|
[10] |
焦文涛, 韩自玉, 吕正勇, 等. 土壤电阻加热技术原位修复有机污染土壤的关键问题与展望[J]. 环境工程学报, 2019, 13(9): 2027-2036. doi: 10.12030/j.cjee.201905138
|
[11] |
朱岗辉, 孙璐, 廖晓勇, 等. 郴州工业场地重金属和PAHs复合污染特征及风险评价[J]. 地理研究, 2012, 31(5): 831-839.
|
[12] |
WU Q, LEUNG J Y S, GENG X, et al. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: Implications for dissemination of heavy metals[J]. Science of the Total Environment, 2015, 506: 216-217.
|
[13] |
DONAHUE W F, ALLEN E W, SCHINDLER D W. Impacts of coal-fired power plants on trace metals and polycyclic aromatic hydrocarbons (PAHs) in lake sediments in Central Alberta, Canada[J]. Journal of Paleolimnology, 2006, 35(1): 111-128. doi: 10.1007/s10933-005-7878-8
|
[14] |
SONG Y F, WILKE B M, SONG X Y, et al. Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals (HMs) as well as their genotoxicity in soil after long-term wastewater irrigation[J]. Chemosphere, 2006, 65(10): 1859-1868. doi: 10.1016/j.chemosphere.2006.03.076
|
[15] |
生态环境部. 建设用地土壤污染风险评估技术导则:HJ 25.3-2019[S]. 北京: 中国环境科学出版社, 2019.
|
[16] |
李非里, 刘丛强, 宋照亮. 土壤中重金属形态的化学分析综述[J]. 中国环境监测, 2005(4): 21-27. doi: 10.3969/j.issn.1002-6002.2005.04.007
|
[17] |
RUBY M V, DAVIS A, SCHOOF R, et al. Estimation of lead and arsenic bioavailability using a physiologically based extraction test[J]. Environmental Science and Technology, 1996, 30(2): 422-430. doi: 10.1021/es950057z
|
[18] |
XU W, HOU S, LI Y, et al. Bioavailability and speciation of heavy metals in polluted soil as alleviated by different types of biochars[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(19): 484-488.
|
[19] |
XIA W Y, FENG Y S, JIN F, et al. Stabilization and solidification of a heavy metal contaminated site soil using a hydroxyapatite based binder[J]. Construction & Building Materials, 2017, 156(15): 199-207.
|
[20] |
王璇, 于宏旭, 熊惠磊, 等. 南方某典型矿冶污染场地健康风险评价及修复建议[J]. 环境工程学报, 2017, 11(6): 3823-3831. doi: 10.12030/j.cjee.201603219
|
[21] |
JUHASZ A L, SMITH E, WEBER J, et al. Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils[J]. Chemosphere, 2007, 69(6): 961-966. doi: 10.1016/j.chemosphere.2007.05.018
|
[22] |
GONZÁLEZ-GRIJALVA B, MEZA-FIGUEROA D, ROMERO F M, et al. The role of soil mineralogy on oral bioaccessibility of lead: Implications for land use and risk assessment[J]. Science of the Total Environment, 2019, 657: 1468-1479. doi: 10.1016/j.scitotenv.2018.12.148
|
[23] |
尹乃毅, 都慧丽, 张震南, 等. 应用SHIME模型研究肠道微生物对土壤中镉、铬、镍生物可给性的影响[J]. 环境科学, 2016, 37(6): 2353-2358.
|
[24] |
LU Y, YIN W, HUANG L, et al. Assessment of bioaccessibility and exposure risk of arsenic and lead in urban soils of Guangzhou City, China[J]. Environmental Geochemistry and Health, 2011, 33(2): 93-102. doi: 10.1007/s10653-010-9324-8
|
[25] |
孙立强, 孙崇玉, 刘飞, 等. 淮北煤矿周边土壤重金属生物可给性及人体健康风险[J]. 环境化学, 2019, 38(7): 1453-1460. doi: 10.7524/j.issn.0254-6108.2018092801
|
[26] |
TAO X Q, SHEN D S, SHENTU J L, et al. Bioaccessibility and health risk of heavy metals in ash from the incineration of different e-waste residues[J]. Environmental Science and Pollution Research, 2015, 22(5): 3558-3569. doi: 10.1007/s11356-014-3562-8
|
[27] |
Environmental Protection Agency. Office of emergency and remedial response. Risk assessment guidance for superfund (RAGS) part A[J]. Saúde Pública, 1989, 804(7): 636-640.
|
[28] |
Environmental Protection Agency. Exposure factors handbook[S]. National Center for Environmental Assessment. EPA/600. National Technical Information Service, Washington, DC: Environmental Protection Agency, 2011.
|
[29] |
LI H H, CHEN L J, YU L, et al. Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China[J]. Science of the Total Environment, 2017, 586(15): 1076-1084.
|
[30] |
王学锋, 杨艳琴. 土壤-植物系统重金属形态分析和生物有效性研究进展[J]. 化工环保, 2004, 24(1): 24-28. doi: 10.3969/j.issn.1006-1878.2004.01.008
|
[31] |
CHEN G, ZENG R, DU R, et al. Transfer of heavy metals from compost to red soil and groundwater under simulated rainfall conditions[J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 211-216. doi: 10.1016/j.jhazmat.2010.04.118
|
[32] |
蔡荣欣. 土壤的热修复[J]. 上海化工, 2018, 43(8): 41-44. doi: 10.3969/j.issn.1004-017X.2018.08.014
|
[33] |
HUANG Y T, HSEU Z Y, HSI H C. Influences of thermal decontamination on mercury removal, soil properties, and repartitioning of coexisting heavy metals[J]. Chemosphere, 2011, 84(9): 1244-1249. doi: 10.1016/j.chemosphere.2011.05.015
|
[34] |
VIDONISH J E, ZYGOURAKIS K, MASIELLO C A, et al. Pyrolytic treatment and fertility enhancement of soils contaminated with heavy hydrocarbons[J]. Environmental Science & Technology, 2016, 50(5): 2498-2506.
|
[35] |
MA F, ZHANG Q, XU D, et al. Mercury removal from contaminated soil by thermal treatment with FeCl3 at reduced temperature[J]. Chemosphere, 2014, 117(1): 388-393.
|
[36] |
裘知, 孙福成. 重金属热处理过程中的挥发及其抑制[C]//环境污染防治应用技术交流会, 2010:246-247.
|
[37] |
赵天从. 重金属冶金学[M].北京: 冶金工业出版社, 1981.
|
[38] |
王昕晔. 垃圾焚烧过程中铅和镉的挥发特性及其排放控制研究[D]. 南京: 东南大学, 2016.
|
[39] |
李进平, 胡云娇, 陈思奇. 污泥热干化过程中重金属Pb、Cu、Zn的形态转化及稳定特性[J]. 环境工程学报, 2015, 9(12): 6041-6044. doi: 10.12030/j.cjee.20151262
|
[40] |
张怡斐. 市政污泥热处理过程中主要污染物的迁移转化[D]上海:上海交通大学, 2011.
|
[41] |
LENG L, YUAN X, HUANG H, et al. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge[J]. Bioresource Technology, 2014, 167: 144-150. doi: 10.1016/j.biortech.2014.05.119
|
[42] |
王涵. 污水污泥热处理后重金属的赋存形态与浸出特性研究[D]. 哈尔滨:黑龙江大学, 2015.
|
[43] |
GARAU M, GARAU G, DIQUATTRO S, et al. Mobility, bioaccessibility and toxicity of potentially toxic elements in a contaminated soil treated with municipal solid waste compost[J]. Ecotoxicology and Environmental Safety, 2019, 186: 109766. doi: 10.1016/j.ecoenv.2019.109766
|